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Abstract

This Memorandum presents a simple analytical technique for predicting the RF electric field strength

inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to

predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched

with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload.

The RF field strength is shown to be a function of the surface materials and surface areas. The method

accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of

dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of

all equations and presents examples and data to support the validity of the technique.
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1.0 INTRODUCTION

An analysis technique has been developed to predict the RF field strength, within the Delta fairing, arising

from radio frequency transmission inside the fairing. This analysis is required to evaluate the impact of the

radiation that could be caused by payloads launching with their telemetry transmitters radiating. This

memorandum discusses the development of the analytical technique (mathematically derived in Appendix

B) for predicting the RF electric field strength inside an enclosed volume in which radio frequency radia-

tion occurs. The basic analytical approach is presented in Appendix A and Reference (2).

The analysis provides the ability to account for losses associated with the acoustic blankets which line the

fairing wall. A method for evaluating the RF losses within the acoustic blankets is also provided and

presented in Appendix D. This memorandum provides experimental data which validates the method. The

technique is then used to estimate the RF fields inside the Delta fairing developed by the transmitters on the

KoreaSat and XTE satellites. The computations were performed using the mathmatical functions of the

Microsoft Excel spreadsheets.

The attached appendices provide rigorous derivations of all equations used in the analysis and provide

insight into the technique for acoustic blanket modeling. Thorough study of these appendices can provide

insight into the factors involved. This memorandum addresses the analytical concept, analytical steps,

summary of background and efforts, validation of the analytical model, recommendation for composite

fairing, and conclusions.

2.0 ANALYTICAL CONCEPT

The analysis is based on the technique and hypothesis presented by M. P. Hallett in Appendix A. This

concept (derived from the conservation of energy) is that the field inside the fairing will increase, due to

reflections, until all the energy being supplied by the transmitter is absorbed by the surface areas exposed

to the RF field. Due to the combined reflected and scattered waves, the magnitude of the RF field is

hypothesized to be equivalent to the magnitude of a single incident wave which would dissipate the total

transmitter RF energy in the surface areas. The approach is an application of "Poynting's theorem" which

states: The power delivered by internal sources (the payload transmitter) to a volume is accounted for by the

power dissipated in the resistance of the media (air) plus the time rate of increase in power stored in the

electric and magnetic fields in the volume plus the power leaving through the closed surface(s).

In our problem the power dissipated in the resistance of the media (air) inside the volume is extremely

small and can be considered to be zero. Also, since the concern is for a stabilized system, the time rate of

increase of the power stored in the electric and magnetic fields in the volume has become zero. Thus the

theorem is reduced to the following: the power supplied by the transmitter is equal to the power leaving

through the closed surface(s).

Mathematically the concept is implemented in Appendix B, equation (B55).

_ 2Ak_,,,_rea l Ok
k=l l[0o + Ok 2



Where: P is theradiatedpower,

i is theabsolutevalueof thesurfaceincidentxvave,E 0
A k-surfis theareain squaremetersof thesurfac{k,
ri is thecompleximpedanceof thesurfacek malerial,and
1"1k is thecompleximpedanceof themedia(air) insidetheenclosure.

0

This equation shows the field is dependent on the area and impedance of each surface. The impedances of

the surface areas are, in general, a function of frequency for homogeneous materials. The acoustic blanket

covered surface area impedance is very complex being a composite function of the properties and thick-

ness of each material, the order of layers of material, and the impedance of the wall material.

3.0 ANALYTICAL STEPS

The analytical steps which are performed during an analysis are briefly outlined here:

a) Compute the surface area in square meters of each of the different types of materials exposed to
the RF field.

b) Compute the intrinsic RF characteristics of each material exposed to RF field. These character-

istics are usually described as complex numbers. The equations for computing the characteristics

of most materials, including air and aluminum, are provided in Appendix C.

c) Determine the effective RF impedance of the blanket covered fairing walls. The necessary math-

ematical equation derivation and the methodology used is described in Appendix D.

d) Compute the incident wave's RF electric field strength using equation (B55) of Appendix B and

the results of the three previous steps.

Appendix A and Reference (1) provide initial explanation,', of the method and its application to early mod-

els of the fairing. These original explanations and computations did not include, or consider, the affects of

the acoustic blankets.

4.0 SUMMARY OF BACKGROUND AND EFFORTS

Early in the development of the Small Expendable Launch Vehicle (SELVs) service, a need arose to esti-

mate the fields created by RF radiation within the launch ",ehicle's fairing. At that time, no analytical tools

were readily available. Therefore, a simple test was pei formed using a 1-watt S-band source radiating

inside the fairing, and measuring the resulting field strenglh at several points inside the fairing. The results

were alarming; with measured field strengths approachirg 100 v/m. Consequently, the SELVs program

does not allow RF radiation within their fairing.

During the launch processing of an Atlas-E mission, a NO. _tA spacecraft reported experiencing unexpected

noise and interference of instrumentation data during ground testing. The test included RF transmitter

radiation while encapsulated in the fairing. The noise an{_ interference vanished when the transmitter was

powered off, indicating that the spacecraft was operating at the edge of its limit. The RF field levels were

not known.

Because of the SELVs data and anecdotal information from the Atlas-E program, we began to question the

validity of past decisions allowing RF radiation within the Medium Expendable Launch Vehicle (MELVs)



sevice(Delta)fairing. It appearedthatthesedecisionshadbeenbasedoneitherfreespacecalculationsof
thefield strength,or similarity to anearlier(successful)mission. Neitherapproachcouldbesupportedon
arigorousengineeringbasis.

We thenstarteddevelopmentof a method which could be justified by sound engineering principles to

estimate the field strength inside a fairing. Considerable effort was expended examining computationally

intensive approaches using resonant cavity theory, ray tracing theory, etc. The mathematics involved were

extensive and the results questionable, although indicating that fields were high, as expected. Theoreti-

cally, a finite difference program (such as GEMACS) is capable of solving this class of problem. However,

the physical dimensions of the problem resulted in huge matrices that demanded the capabilities of large,

fast computers. An additional shortcoming was that these programs offered little visibility into the factors

involved, such as program implementation limits, or the ability to vary parameters within the model.

The basic technique is outlined in sections 2.0 and 3.0. This technique involves computations that can be

performed within a spreadsheet, yielding results that are reasonably accurate and tend to bound the upper

limit of the field. The reader is cautioned that this technique yields an assumed uniform field strength,

not an exact solution of the field distribution.

The first attempts to model the Delta vehicle, spacecraft, and fairing resulted in prediction of very high

field strengths. Incident RF fields of about 115 volts per meter and a standing wave of about 230 volts per

meter were computed for 1 watt transmitted. Further investigation indicated that the RF window estab-

lished a limiting factor on the buildup of the internal fields. Given the typical size of the current window

(approximately 0.5 m2), our model shows that the field developed by a 1 watt source would be an incident

wave in the order of 30 volts per meter with a possible standing wave to 60 v/m. This is still high, and one

can reasonably question the validity of the result in light of many successful launches without indications

of EMI.

A review of the various items contained within the fairing was then initiated, searching for materials that

might further reduce the fields. We concluded (and later proved by testing) that the acoustic attenuation

blankets which line the fairing are also quite effective absorbers of RF energy. This conclusion then

demanded development of a model for the acoustic blankets, thus completing our model of vehicle, space-

craft, and fairing. This blanket model and vehicle model were subsequently validated by experimental

data, as described in section 5.0 of this memorandum.

5.0 VALIDATION OF THE ANALYTICAL MODEL

The validation of the analytical technique and equations is addressed in four parts. The four parts are

presented in the chronological order that the test data and analysis model developed. The first (section 5.1)

addresses the equations and modeling of the acoustic blankets. The second (section 5.2) addresses the

application of our technique to an aluminum room. The third (section 5.3) deals with analysis and measure-

ments made within actual vehicle fairing enclosures. The fourth part (section 5.4) provides a correlation of

measured RF field data with the results of the analytical technique and equations as applied to a six foot

diameter composite fairing test article.

It should be noted that three different types of acoustic blankets are discussed in this memorandum. The

first is the blanket that has flown in the metal fairing for many years. It is built somewhat like a large pillow



with fiberglassbattingcoveredall aroundbyathincover.Tl_isfirst blanketisdiscussedin sections5.1,5.2,
5.3.1,and5.3.2.Thesecondacousticblanketis theoriginaldesignfor thecompositefairing. It is afoamin
contactwith thefairing wall andhavingthesurfacefacingthecenterof thefairing coveredby a sheetof
highly reflectivealuminizedkapton.This secondblanketis discussedin section5.3.3.Thethird acoustic
blanket,discussedin section5.4,is afoamin contactwith thefairingwall with it's innersurface(facingthe
centerof thefairing) coveredwith asheetof carbonloadedkapton.

5.1 Acoustic blanket modeling

The computations required by our model were initially frustrated by the presence of dielectric materials in

the blankets. The blankets' unknown electrical properties and the inability to accurately evaluate their

affect on the fields presented serious problems. The need for an accurate method of evaluating the acoustic

blanket's affects became the major goal in arriving at a good analytical model.

Initial evaluation of the RF losses in the acoustic blanket began as a series expansion of the reflected and

transmitted waves between the boundaries of the many layers of materials in the blanket and the fairing

wall. This initial method convinced us the blankets were a dominant factor in reducing the field strength

inside the fairing. The series expansion technique presented several difficulties which caused an increase

in efforts to define another method. A method to accurately determine the effective impedance of the area

covered by the blankets was sought. Reference (4), Section 7-08, provided the insight to allow the deriva-

tion of the Appendix D equations.

The Appendix D equation (D17) eventually proved to accurately provide the complex impedance for the

blanket covered wall area. The validity of the blanket model is confirmed by classical theory and experi-

mental testing, which demonstrates that the results are reasonably accurate.

5.1.1 Classical Theory

The RF characteristic of homogeneous materials can be c, _mputed using the known conductivity, perme-

ability and permitivity of the materials. Many texts providt: simplified equations for their computation and

testify to their validity. Appendix C provides a thorough d_velopment of the generic equations, which can

be simplified, using appropriate assumptions, to the equations presented in most texts. This testifies to

their theoretical validity.

While the impedance of many materials can be easily computed, the equivalent impedance of several layers of

material is not easily computed nor is it a subject treated taoroughly or effectively in text books. The text

typically make a brief reference to transmission line corollahes, present highly simplified equations (with no

explanation of the simplifying assumptions which were used _, and then Munch into activities with Smith charts

etc. In contrast to this, the rigorous mathematical derivatio_l of equation (D17) in Appendix D indicates it is

theoretically sound. This derivation makes no confusing references to transmission line theory or Smith charts.

This equation defines the complex impedance at the surface c,f a single layer of material (media 1) of thickness,

T = l, which covers a plate (media 2). The subscript 1, desig:mtes the single layer material and subscript 2 is the

plate. Alpha and beta are for the single layer of material (rr.edia 1). Successive application of the equation is

required to determine the impedance of several layers of materials.



n J'[(": + "')eaJ +(/72- ",)e-a"]c°sfl, l + J[("2 + ",)ead -("2- ",)e-ad]sin_,l 1

0L(l)='gl[[(02 +"l)ead--("2-"l)e-a't]c°sflll+j[("2 +"1) ea't +("2 "l)e-"'t]sinfllIJ

The equation matches the simplified equation (with the appropriate simplifying assumption, o_, = 0) which

is normally presented in text books. This correlation with the texts supports its validity. Other evidence is

also available. Since most texts use transmission line theory as a corollary for analyzing RF transmission

through media, the characteristics from transmission line theory will be used here to demonstrate the valid-

ity of the equation application. The optics world also has corollaries to these characteristics which will not
be discussed here.

5.1.1.1 Half Wavelength Characteristics

One well known impedance characteristic of a transmission line is that a transmission line of length equal

to a multiple haft wavelength behaves as if the transmission line is not present. In other words, the load at

the source is the same as the impedance terminating the fine. Equation (D17) of Appendix D was used to

calculate the equivalent impedance of fiberglass batting on air and batting on aluminum. Figures 1 and 2

show the results as a function of the batting thickness in wavelengths. At multiples of the haft wavelength,

Figure 1 shows the effective impedance to be that of air. Figure 2 shows the effective impedance to be that

of aluminum at the half wavelength points. Both examples demonstrate the effective half wavelength

characteristic expected from its corollary transmission line theory and confirm its validity.

Classical transmission line theory shows that the impedance repeats at half wavelength increments. This

repeating characteristic is demonstrated in the examples shown in Figures 1, 2, 3, 5, and 7.
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5.1.1.2 Quarter WaveLength Characteristics

Another characteristic suggested by the transmission line ¢orollary is the impedance characteristics for odd

multiples of lossless quarter wavelength line which is tel minated by the characteristic impedance of the

source. That is, if the line length (batting thickness) is an odd multiple of a quarter wavelength then the

equivalent impedance at the source has an imaginary par which is zero and the real part has a minimum

magnitude. Figure 1 demonstrates this low value for the real part and a zero value for the imaginary part



atthequarterwavelengthintervals.

Thequarterwavelengthtransmissionline is alsoanimpedanceinverter.Thischaracteristicsaysthatfor a
"shorted"load(aperfectconductor),atoddmultipliesof quarterwavelengthline, theeffectiveimpedance
is infinite. Figure2 is for battingonaluminumandshowsthattherealandimaginarypartsareoff scaleat
theodd multiple quarterwavelengths.(Actual computationswereon theorderof millions of ohmsfor
both the real and imaginaryparts).Similarly, the theorysaysanopencircuit would be invertedto an
effectiveimpedanceof zeroat thequarterwavelengthdistances.Figure3 showsthecomputationfor the
battingon anhigh impedancecircuit andshowstheexpectedlow (zero)impedanceat thequarterwave-
length.

5.1.1.3 Shorted and Opened Transmission Line

The computed impedance terms also follow the classical shapes for the shorted transmission line of vary-

ing length. Figure 4 is a typical figure given in textbooks showing the reactance for a transmission line

terminated in a short circuit as a function of transmission line length. Figure 5 shows the computed reac-

tance for the batting on aluminum which matches the Figure 4 form. Figure 6 (typically in textbooks)

shows the reactance for a transmission line with an open circuit load. Figure 7 shows the computed

reactance for the batting on a plate with a relatively high impedance, which matches the Figure 6 character-
istics.

5.1.1.4 Classical Theory Conclusions on Equation

Each of these computations show that the Appendix D equation (D17) agrees with the corollaries to trans-

mission line classical theory. The equation demonstrates the expected quarter wave inverting characteristic,

the expected half wave transparency, repeating impedance for each half wavelength, and provides the

expected capacitive and inductive nature of the impedance with length (thickness). This correlation indi-

cates the mathematical model (equation (D17) of Appendix D) is valid for the application to the acoustic

blanket installation in the fairing.

A significant point of this discussion is that for any given frequency, one may expect the RF impedance of

the acoustic blanket to vary as a function of the batting thickness. In fact, it will vary between a rather high

loss level (medium impedance, low reflection) defined by the cover sheet material and a rather low loss

level (small impedance or highly reflective) defined by the wall behind the blanket. This leads us to still

another observation. At S-band frequencies, it is theoretically possible for the blankets to become "trans-

parent" due to compression and billowing, leaving the RF window the dominant factor in establishing the

upper boundary of the RF field. This will be discussed in greater detail in sections 5.3.1 and 5.3.2.

5.1.2 Cover Sheet Model Validation

Determination of the characteristics of the blanket's cover sheets is difficult because it is not a homoge-

neous material. It is made of several layers of different material. Fortunately the composite properties can

be determined experimentally by insertion loss measurements. The measurements provide the complex

dielectric constant and loss tangent at various frequencies. Test data on the carbon loaded cover sheets of

the acoustic blankets was provided by McDonnell Douglas Aerospace (MDA). This data defined the

sheet's thickness, dielectric constant, loss tangent, insertion loss, phase angle, and conductivity. Appendix

E provides the equations for computing the resistance, impedance, attenuation, and phase shift constants



for the sheet using the complex dielectric constant and the loss tangent. The Appendix E equations com-

puted comparable results to the test data. These cover sheet computations results were used with equations

(D 17) and (D21) of Appendix D to compute the insertion loss of the single cover sheet at frequencies from

2 to 13 GHz. Table 1 provides the computed and the measured values. Reasonable agreement is apparent

at all frequencies. This data indicates the mathematical model for the cover sheet is valid.
Table I.

Carbon Loaded cover sheet, insertion loss

Frequency- GHz

Measured*
Insertion Loss

2.862

3 2.91 2.908

4 2.95 2.955

5 3.00 3.000

6 3.05 3.047

7 3.09 3.093

8 3.14 3.140

9 3.18 3.187

10 3.23 3.232

11 3.28 3.277

12 3.32 3.324

13 3.37 3.371

*Test data providedby DuPont,

Calculatad
insertion Loss

2.862

Circleville, OH !o MDA; FAX dated 8/24/95.

5.1.3 Blanket on RF Window Model Validation

The sheet model developed in the previous step was then combined (using Appendix D technique) with the

characteristics for a 1.5 inch fiberglass batting, thus providing a model for the 1.5 inch blanket on the RF

window. The model provided insertion loss calculations of about 5.2 dB. Measured data for the insertion

loss of the blanket varied from 3.4 to 4.4 dB. Reasonable comparison with the test data exists. This

correlation provides further confidence that the mathematical model and technique are valid and that a

valid model for the blanket's performance has been accomplished.

5.1.4 Conclusions on Acoustic Blanket Modeling

Classical theory supports the use of the equation. Its applications to blanket components show agreement

with experimental test data confirming its validity.

5.2 VALIDATION OF THE BASIC TECHNIQUE

The next step in the validation of the technique is to demonstrate the model in an enclosed volume. To

accomplish this an aluminum room was constructed measuring 8 feet by 8 feet by 8 feet. Measurements of

RF field strength inside the room were made while transrnJtting 1 watt at S-band frequencies. Reference

(2) describes the test and results. These measurements we_ e compared to the model predictions for three

cases:

1. The room with bare aluminum surface.

2. The room with a small area covered with acousti( blankets.

3. The room with a larger area covered with acoustic blankets.

10
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5.2.1 Bare Aluminum Walls

Predictions for the bare aluminum surfaces of the cube room were 254 volts per meter for the incident

wave giving rise to a possible 508 volts per meter for the standing wave. The 254 volts per meter is the

RMS value of the wave incident on the wall to give the power loss. The 508 volts per meter corresponds to

the RMS value of the standing wave inside the enclosure. Figure 8 shows the fields measured at one point

in the room as the frequency of the signal was varied. The hypothesis is that the peak standing wave for a

fixed frequency is very close to the receiving probe and is comparable to the peak field measured with the

frequency varying. Measurements showed levels averaging 85 volts per meter and a maximum standing

wave measurement of 197 volts per meter. The concern is for the maximum field. A very large standing

wave is present with peaks located very close to one another. The average distribution of the measure-

ments is what one would expect with the large standing wave. Subsequent assessments of the antenna

loading characteristics indicated the actual power being radiated could have been reduced to about 0.7

watt. Making the corrections indicated the maximum measured fields could have been as high as 236 volts

per meter. This 236 V/m (or the uncorrected 197 V/m) compare favorably with the predicted incident wave
level of 254 V/m. Another loss factor not accounted for was the dielectric material used for the antenna

stand and the probe stand. The presence of the very high field strength would likely cause appreciable

losses in these stands. The model bounded the measured levels providing an upper limit and demonstrating

a reasonable close agreement with the test data.

5.2.2 Small Area of Blanket-Covered Wall

The batting data and sheet model discussed is section 5.1 were used to define the model for the blanket on

aluminum. This model was then used to predict the RF fields which would result in the 8 foot aluminum

cube room. Slight variations in the thickness of the batting material in the blanket cause significant effects

11



on thepredictedRF fieldsinsidetheroom. Figure9 showsthepredictedeffectof battingthicknesson the
field strengthinsidetheroom. Figure10showstheeffectontheimpedanceof thecoveredareaandFigure
11showstheeffecton thereflectanceof thecoveredarea.

Initial testingwith anacousticblanketusedoneblanketsegmentapproximately15incheswideby 14feet
longand3inchesthick. Themodelpredictionsfor thisblanketedareawereanincidentfield of 14voltsper
meterfor themostlossybattingthicknessand250voltspermeterfor theleastlossybatting thickness. The

least loss condition allows the covered wall area to behave as bare aluminum. The predictions indicate

incident fields could be between 14 and 250 volts per meter depending on the installation and manufactur-

ing tolerances of the blanket. This means the standing wave field value could be as high as 500 volts per

meter. The most likely values would be the average of the predicted incident fields as thickness varies

(reference Figure 9) which gives an incident value of 54 and a standing wave of 110 volts per meter. Figure

8 shows the measured values. Test measurements showed average fields of 55 volts per meter with the

maximum of 85 volts per meter. Using the possible correction for antenna loading, the measured fields

could have been at higher values (an average of 66 and maximum of 102 volts per meter). Our model

predicted the possibility of high fields and bounded the upper limit of the problem. The model suggests

that the blankets could have provided a much lower field value if the installed thickness was made smaller.

V/m
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200.00.
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• _!" ca
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Figure 9. Effect of blanket thickness on feld strength inside enclosure.
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5.2.3 Large Area of Blanket-Covered Walls

Subsequent testing with blankets covering 42% of the wall surface, measured average field strength of 17

volts per meter, and a maximum level of 33 volts per mete r. Antenna loading could indicate the fields

could be as high as 40 volts per meter. This reduction, caused by added blanket area, supports the model's

use of surface area as a prime factor. The model predicts fie incident RF field could be as low as 6 volts

per meter for blanket thickness in the most lossy condition. The model predicts incident fields could still

be as high as 250 volts per meter for the least lossy thickness. The standing wave could be as high as 500

volts per meter. It is believed that the conditions are such that the most likely value of incident RF field

would be an averaging of the effects giving the most likely calculated incident value of 26 volts per meter

and a standing wave of 52 volts per meter. The 33 to 40 volts per meter measured compares very well with

the 26 to 52 volts per meter predicted, further demonstrating the validity of our method.

5.2.4 Aluminum Room Model Conclusions

The model definitely predicts the blankets can be extremely lossy. It also warns that the loss could be

dramatically affected by construction tolerances, installatioN, and billowing during launch. The variations

of loss suggest the possibility of very high fields developing. The model also provides some valuable

insight into the nature and characteristics of the losses. The model established an upper limit which en-

compassed the test results.

5.3 VEHICLE VALIDATION

5.3.1 KoreaSat RF Measurements

The RF fields inside the 9.5 foot aluminum fairing were measured during ground testing of the KoreaSat

mission. The model predictions were compared to the fields measured.

The model for the KoreaSat vehicle included:

• Frequency of 12.5 GHz

• Transmitter power of 1.3 watts

• Bare aluminum area of 137.5 square meters

• 3 inch acoustic blanket covered area of 18.5 squar. • meters

• 1.5 inch acoustic blanket covered area of 15.5 squzre meters

• 1.5 inch blanket covered RF window of 0.5 square ::neter

Models for the 3 inch and 1.5 inch blankets were developeC The acoustic blankets included the validated

batting data and sheet characteristics. The model predicted incident field value of 3.5 to 6 volts per meter

with blankets installed. The standing wave was expecled to be less than 12 volts per meter. The

unpredictability of the blankets' losses cause the RF window losses to establish an incident wave of 30

volts per meter and a corresponding standing wave of 60 vo ts per meter. Consequently we expected to see

fields as low as 3.5 to 12 volts per meter with a possible high of 60 volts per meter. Testing indicated values

of 3 to 8 volts per meter at various locations within the fairing. The maximum test data was bounded by the

model predictions showing that the data measured on KoreaSat agrees well with the model. The test data

supports the validation of the technique.

14



5.3.2 XTE Mission RF Levels

Measurements were made for the XTE mission during ground testing. The model for the XTE vehicle
included:

• Frequency of 2.2875 GHz

• Transmitter power of 1.0 watt

• Bare aluminum area of 128.5 square meters

• 3 inch acoustic blanket covered area of 35 square meters

• 1.5 inch acoustic blanket covered area of 18 square meters

• 1.5 inch blanket covered RF window of 0.5 square meter

The model for the XTE 10 foot fairing and vehicle (including 3 inch acoustic blankets, and 1.5 inch acous-

tic blankets) was developed. The acoustic blankets included the validated batting data and sheet characteristics.

The model predicted an incident field value ranging from 2.2 to 5 volts per meter for the blanket installa-

tion. The standing wave was expected to be less than 10 volts per meter but the unpredictability of the

blankets defaults to the RF window established upper boundary of 30 volts per meter. The bulk of the

measurements on XTE were below 5 volts per meter, and a few measurements were about 9 volts per

meter. One point measured 20.4 volts per meter. This high point was at some distance from the antenna

and demonstrates the magnitude of the standing wave and the unpredictability of the blanket losses.

5.3.3 Composite Fairing Testing

Two configurations for the composite fairing were tested. One configuration was a fairing with no acoustic

blankets installed which was also used as the structural test article. This configuration is referred to here as

the "bare" composite fairing test. The second configuration had 3-inch acoustic blankets installed and was

used for the acoustic testing. The second configuration is referred to in this memorandum as the composite

fairing with acoustic blankets test. The acoustic blankets were a different design from those discussed in

the previous section and were not expected to be lossy.

5.3.3.1 Bare Composite Fairing Test

A one watt source was radiated (using a horn directional antenna) at 2 to 13 GHz and RF field measure-

ments made. The tests were performed with the radiating antenna located in the center of the fairing at

approximately 2/3 the fairing height. The radiating antenna was pointed up toward the nose of the fairing.

The test probe was at three locations. During test 1, it's location was about 30 inches from the side wall, at

1/2 the fairing height. During test 2, the test probe was located about 3 feet from the side wall at about 2/3

the fairing height. For tests 3, the test probe was located approximately 2 feet from the side wall at about 2/

3 the height of the fairing. Table 2 presents a summary of the RF field strengths measured.

Table 2.

RF Fields Measured in the Bare Composite Fairing.

PoslUon !

Maximum 39.0
Minimum 6.6
Average 20.0

:l"est2 _,_!! :_:: ,i'est3 :
voltslmetlr _ volts/molar "

39.0 63
2.2 7.9

14.0 25.0
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The analytical model for the bare composite fairing configu:ation, predicted an incident wave of 39 volts

per meter and a corresponding standing wave of 78 volts pe_ meter. This test provides reasonable correla-

tion with the analytical model predictions.

5.3.3.2 Composite Fairing with Acoustic Blankets Test

A one watt source was radiated (using a horn directional antenna) at 2 to 13 Ghz and RF field measure-

ments made. Tests were performed with the radiating antenna at three orientation positions and the test

probe at two locations. During test 1 and 2, the transmit antenna was pointed toward the top of the fairing

and was located at about 40 inches from the side wall at approximatel mid-height of the fairing. For test 3

the radiating antenna was also pointed up, but was located at about l/4th the fairing height. The test 3

location for the radiating antenna was about 40 inches from the side wall, at 1/4 the fairing height, but

pointed toward the closest fairing wall. During test 1, the test probe was located about 1 foot from the side

wall at about 1/3 the fairing height. For tests 2,3, and 4, the test probe was located approximately three feet

from the side wall at about 2/3 the height of the fairing. Table 3 presents a summary of the RF field

strengths measured.

Table 3.

RF fields Measured in the Composite Fairing With 62.4% Blanket Coverage.

_PoslUon I Test1 Test2 Test3 Test4 :!
[ volts/meter voitslmeter volts/meter voltslmeter ....'I

Maximum 43.8 52.8 53.2 53.6

Minimum 7.8 13.4 7.8 12.4
Average 22.8 28.8 25.3 29.8

These measurements confirmed predictions that the blankezs were not lossy and would probably result in

an increase of field over the bare fairing. The data indicates m increase in field strength when compared to

the data in Table 2. The analytical model for this configura! ion, predicted an incident wave of 29 volts per

meter and a corresponding standing wave of 58 volts per rieter. This test provides reasonable correlation

with the analytical model predictions.

5.3.4 Vehicle Validation Conclusions

The analytical model provides reasonable agreement withhe tests performed and consistently predicts a

conservative upper bound of the field.

5.4 VALIDATION USING A 6-FOOT DIAMETER COMPOSITE FAIRING TEST ARTICLE.

The previously discussed testing tended to support the use of our technique. Each of these previous tests,

however, had factors which introduced some level of uncertainty in the results. The sources of uncertain-

ties included unstable wails (aluminum room), actual installt,,d blanket thickness, surfaces areas of unknown

materials and RF properties (spacecraft surfaces), limited a,:cess, limited radiation frequency, and the radi-

ated RF power. A development six foot diameter composite fairing was selected as a test article to allow

more exacting and thorough testing with no interference with vehicle development, production, or process-

ing schedule.
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We performedthe calculationsto estimatethe field strengththat a 1 watt transmitterwould createby
radiatingwithin theenvelopeof thesix foot diameterfairing.Thesecalculationswerecarriedout for two
differentboundaryconditions.First, for a fairing with barewalls. Second,for a fairing with blanketed
walls.Wethenperformedaseriesof teststo compareourcalculatedestimateswith actualmeasuredvalues
for thetwo boundaryconditions.Theresultsof thesetestsshowedthatour techniquecanprovideuseful
estimatesof theresultingfields within thefairing volume.The reader is onceagaincautioned that our
techniqueyields an assumeduniform field strength, not an exactsolutionof the field distribution.

Weintendto useour techniqueto estimatethefield strengthcreatedwhenoperatingatransmitterwithin a
fairing envelope.This informationwill thenbeusedto evaluatetheelectromagneticinterferencemargins
for equipmentlocatedwithin thevolume.

5.4.1 The Analysis

We begin the analysis by determining the interior surface area of the test fairing. The surface area of the

interior wall was determined to be approximately 27 m 2 , with an approximate 3 m 2 aluminum aft closure.

Figure 12 illustrates the fairing configuration and the construction of the blanket.

Figure 12. Test Fairing and Blanket Configuration,

I_ 15'- 6"

_ Cover Sheet

_"////,,,_//////'_ Melamine Foam

"__ Composite Wall

Next, we determined the electrical properties of the materials. The properties of some of these materials

were readily available in handbooks, other materials required laboratory measurement.

We employed a computer spreadsheet to organize our data and to perform the many calculations required

to complete the analysis. We found the spreadsheet's "built in" capability to perform mathematical opera-

tions using complex numbers to be quite helpful. However this capability is not mandatory; the spreadsheet

can be set up in a classical manner to perform the required operations. We strongly recommend that the

user spend some time reviewing the mathematics of complex numbers before attempting to set up an

analysis such as this. A Pascal program to perform the problem setup and analysis is being developed.
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The variousmaterialpropertiesandrequiredphysicalconstantsaresummarizedin Table4. It shouldbe
noted that the e' and e" (the real and imaginary components of permittivity) have a strong frequency

dependence in some materials. The cover sheet is an example of this, as it is designed to be a lossy dielec-

tric. Therefore, the data in the Table 4 is valid only at the noted frequency of 2.2 GHz. For our analysis, the

cover sheet permitivity was measured over a wide frequency range. We then developed a curve fit function

within the spreadsheet to evaluate e' and e" as a function of frequency. In the case of foam, the permittivity

was measured and found to be essentially constant across a ,vide frequency band. For the Composite and

Aluminum materials, the e" was computed using Appendix E equation E6, based on conductivity values.

The conductivity value used for aluminum is a handbook value, while that of the composite material is a

value estimated by the authors.

Table 4.

RF Properties of Materials in Construction of the Fairing and Blankets (Valid at 2.2 Ghz)

Ma_rlal Cover
6best

1.26E-06

i Ilblamirmii i ii
1.26E-06

cor.poseb

1.26E-06

Aluminum

1.26E-06Mu (permeability) 1.26E-06
epsilon zero 8 85E-12 8.85E-12 8 85E-12 8.85E-12 8.85E-12

0.00E+00 6.68E+01 1.22E-04 3.00E+05 3.72E+07conductivity
(mho/m)
e' 1.00E+00

05 arc tan(e"/e')=

100E+00 7.33E+01 1.02E+00 1.00E+00
e" 0.00E+00 5.46E+02 1,00E-03 2.45E+06 3.04E+08

0.00E+00 7.19E-01 4 92E-04 7.85E-01 7.85E-01

The next step in the analysis is to compute the propagation constant, attenuation constant and phase con-

stant using Appendix E equations El3, El4, El7 & El8. The intrinsic impedance of each of the materials

is also computed using Appendix E equations E9, El0 & E11. As discussed earher, these computations

were set up and performed in a spreadsheet. The results are summarized in Table 5.

Table 5.

RF Characteristics of Materials Used in Fairing and Blanket. (Valid at 2.2 GHz)

,
i i

• :_r Aluml_m
-:Sheet_! ' ..... '_ _

gamma 462E+01 1.08E+03 4.65E+01 7.23E+04 8.05E+05
alpha 0.00E+00 7.13E+02 2.,79E-02 5.11 E+04 5.69E+05

4.62E+01beta 8.15E+02

n_imag

4.65E+01 5.11 E+04 569E+05

Inl 3.77E+02 1.61E+01 3.74E+02 2.41E-01 2 16E-02
n_real 3 77E+02 1.21E+01 3.74E÷02 1.70E-01 1.53E-02

0.00E+00 1.06E+01 184E-01 1.70E-01 1.53E-02

The next step was to determine the RF fields that would be developed in the fairing if a 1 watt transmitter

was to radiate within the fairing envelope. Our first set of boundary conditions assumed an unblanketed

fairing (bare composite walls). We can directly apply App_ ndix B equation B55 (using the impedance of

the composite walls) to determine the anticipated field, The', results are shown in Figure 13 below.
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Figure 13. Predicted RMS Value of Standing Wave in Bare Fairing.

Two intermediate steps in the analysis were performed to enhance understanding the effects of the blanket

materials on the RF fields and the performance of the blanket as a system. It will be shown that the system
performance is much more than the sum of their parts. Neither the foam alone or the coversheet alone is

adequate to reduce the field.

One intermediate step evaluated the RF fields with the cover sheet material lining the fairing wall. In other

words, no foam was present and the cover sheet (0.0015 inches thick) was in contact with the wall. The

equivalent load impedance of the sheet covered wall was computed (using the cover sheet and composite

material RF properties in Appendix D equation D17) before proceeding to Appendix B equation B55. This

configuration resulted in RF fields essentially the same as the bare fairing. Figure 13 also represents the

fields that result from the fairing with only the cover sheet installed.

The second intermediate step in our analysis, was to determine the RF field that would result inside the test

fairing when lined with only the 3 inch thick Melamine foam (no cover sheet installed). The foam is

installed against the composite walls of the fairing. The equivalent load impedance of the foam covered

wall must be computed before proceeding to Appendix B equation B55. The equivalent load impedance of

the blanketed wall was computed using the foam and composite material RF properties in Appendix D

equation D17. The resulting fields are shown in Figure 14.
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Figure 14. Predicted RMS Value of the Standing Wave, Fairing with Foam Only.

It is observed by comparing Figures 13 and 14, that the shape and trend of the foam only curve is much the

same as the bare fairing. However, the RF fields are reduced by about 6 dB from the bare fairing. This

reduction of the RF fields is not readily expected since the properties of the foam are very close to those of

air. This is one example of how a relatively small loss factor can have a large effect on overall system

performance. It is also apparent, however, that the fields arc still unacceptably high. Additional reduction

of the field is needed.

The final step in our analysis, was to determine the field that would be created by a 1 watt transmitter

radiating inside a blanketed (foam and coversheet) fairing. The results for the coversheet only and the foam

only analyses seems to imply that the total blanket will not be effective. We will see that this impression is

incorrect. In this blanketed fairing case, the equivalent load impedance of the blanketed wall must be

computed before proceeding to Appendix B equation B55. "l'he equivalent load impedance of the blanketed

wall was computed by successive applications of Appendix i) equation D 17, working from the wall toward

the fairing center line through the layer of Melamine, then b.rough the cover sheet. The blanket consisted

of a 3" layer of Melamine foam with a .0015" thick cover sh._,et. The blanket is installed with the Melamine

against the composite walls of the fairing and the cover she_ t facing the interior volume of the fairing. The

results of the field strength calculations are shown in Figure: 15.
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Figure 15. Predicted RMS Value of Standing Wave with the Fairing Blanket Installed.

The results show uniformly separated RF field peaks with values corresponding to the "foam only" instal-

lation of Figure 14. The RF field at frequencies between the peaks are drastically reduced to relatively low

levels. This dramatic reduction is used to provide equipment protection for relatively wide frequency

bands centered about the expected radiating frequency.

Further examination of the field strength behavior in a blanketed fairing reveals that the frequencies at

which the high level "spikes" occur are a function the spacing between the cover sheet and the wall (in

other words, a function of the foam thickness). Such behavior is implicit in Appendix D equation D17, but

it is not obvious until the data is plotted with respect to frequency. In simplistic terms; at certain frequen-

cies (determined primarily by the foam thickness), the cover sheet becomes "transparent". The RF energy

must then be absorbed by the Melamine/wall system instead of the more lossy cover sheet thus higher RF

fields are necessary to dissipate the RF power. One can examine this "spiking" behavior in more detail

(using Appendix D equations D21 and D22) to further evaluate the field levels and power dissipated within
the blanket/wall system.

At this point, one could reasonably ask where the energy is being dissipated. The energy loss distribution

for the blanketed fairing configuration is shown in Figure 16 for frequencies about the "spike" at about 2
GHz.
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Figure 16. Distribution of Power within the Blanket-wall System.

The Figure 16 shows that the energy at the low RF field frequencies is primarily dissipated within the

coversheet of the blanket with very little being absorbed by the foam or the Fairing wall. The opposite

is true for the frequencies corresponding to the peak field values. Essentially no energy is lost in the

coversheet while the bulk is going to the foam with a significant dissipation within the fairing wall.

There are some additional interesting facts to be observed when we review the results of the analyses

we have just completed. First, our analysis predicts that a 1 watt transmitter is capable of developing

quite high RF fields within a bare fairing envelope. Second, it is possible to design a blanket system

that can provide significant field strength reductions over specific frequency bands.

As one further examines the theoretical behavior of the system, it is possible to postulate several ap-

proaches that might improve the RF absorption capabilities of the blanket system. Some of these will

be discussed later.

5.4.2 Test Results and Comparison to Analytical Predictions.

Once our analysis was complete, we were ready to attempt to validate our technique by measuring the

actual fields created by a 1 watt RF source installed within our test fairing. We hoped that our analytical

results would "envelope" the actual test data, thereby validating a tool that could then be used to

estimate field levels in an enclosed environment.

Our first tests were conducted inside a bare composite fairiltg. Typical results are shown in Figure 17.
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Figure 17. Test Data Versus Analytical Prediction for the Bare Fairing.

Similarly, a second series of tests were performed in a blanketed fairing. Representative results are
shown in Figure 18.
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Figure 18. Test Data Versus Analytical Prediction for Blanketed Fairing.
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5.4.3 Composite Fairing Test Article Conclusions.

As stated previously, the data is representative of a large number of tests performed with varying

antenna locations (both transmit and field level sensor). While the data sets were expectedly "noisy",

the test results confirmed the general characteristics predicted by our analytical approach. That is, the

fields developed inside a bare fairing were quite high (peaks approaching 200 Vim from a 1 watt

source). In addition, we confirmed the general behavior of the blanket system and its ability to provide

significant reduction to the RF fields in specific frequency bands. The test data also showed the ex-

pected field "peaking" resulting from the spacing between the cover sheet and the wall. It was also

shown that (as predicted) the field levels developed inside a bare composite fairing were quite similar

to those developed inside a metallic fairing. Essentially the composite fairing exhibits RF behavior

much the same as a metallic fairing. It is highly reflective to RF energy and provides significant attenu-

ation from one side of its skin to the other.

Our analytic approach assumes an isotropic source and good scattering, thus assuring the development

of a uniform field within the enclosed volume. This is seldom the case in the real world, especially

when the volume begins to be filled with a payload. A few exploratory tests were performed with a

simulated payload in the fairing volume, and as might be expected, some portions of the volume were

"shadowed" or "choked off." But in general, the overall field levels remained enveloped by our predic-

tions. It is obvious that significant shadowing and blockage would require re-assessment of the absorbing

area. It is probable that an engineering judgment would be required, to arrive at a reduced effective area

of the absorbing blanket.

Mil-Std-1541A requires an inter system EMI safety margin of at least 6 dB for tested systems (12 dB

for systems qualified solely by analysis). The authors certainly concur that the inter system safety

margin for tested systems should be at least 6 dB if our technique is used to estimate the field level. We

have observed test to test variation in measured field levels approaching 3 dB, and recommend caution

in approaching demonstrated safety margins. Although our analysis provides a conservative envelope

for the predicted field levels, approaching a 6 dB safety margin should be done with great care.

As was mentioned earlier, our analysis indicated several approaches that might improve the effective-

ness of the blanket system. One obvious approach is to adjust the blanket thickness such that the

maximum loss is coincident with the frequency of operatioL

A second approach would be to use blankets of two or more I hickness. Here the objective is to have one

blanket provide at least some loss when the other is at its minimum. We tested a configuration that

employed two different thickness blankets in the hope of creating a more uniform field level, with

lower "spikes". While the results from this test showed a general tendency to behave as predicted, the

overall improvement was less than expected. We believe the poor performance was due to less than

optimum scattering of the incident field. The transmitting aatenna used for this test was highly direc-

five. Hence the bulk of the incident power was directed at 01_e blanket or the other causing that blanket

to dominate the system response. These results point out tLat if a highly directive antenna is used to

radiate within the fairing, care must be taken to evaluate t le effective surface area of the absorbing

material.

A third approach towards improving the blanket effectiveness is suggested when the power absorption

behavior of the blanket is examined. If we were to replace the Melamine with a different (more lossy)
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dielectric material, the blanket system would exhibit higher losses in the frequency range where the

cover sheet becomes "transparent." We do not know if such a material exists, or if one could be found

that is compatible with its intended use (weight, cleanliness, etc.). This approach is simply suggested

by the mathematics of the problem.

6.0 RECOMMENDATION FOR COMPOSITE FAIRING

The technique described in Appendix D provides insight into the acoustic blankets' RF performance.

This leads to some recommendations to ensure the composite fairing and acoustic blanket designs

provide an RF environment no worse than the Delta vehicle aluminum fairing and blankets.

6.1 REPLACE ALUMINIZED KAPTON

The layer of aluminum deposited on the kapton cover sheet is too thick, dramatically increasing the

reflection and decreasing the loss. The aluminized kapton sheet should be replaced with a carbon

loaded kapton (or equivalent) which has a reduced conductivity and reflection. This change alone can

substantially reduce the RF fields.

6.2 STABILIZE THE THICKNESS OF THE BLANKET

The thickness of the blanket should not change easily since the changes perturbate the losses within

the blanket. The metal fairing blankets are subject to easy changes in thickness due to installation

method, venting, vibration, air flow, etc. The thickness changes cause the losses in the blanket to

fluctuate greatly and to be unpredictable. The melamine foam is flexible but it is also much more stable

than the batting material so its loss should be more predictable.

6.3 SELECT PROPER COMBINATION OF BLANKET THICKNESS

One of the most obvious recommendations is to provide some blankets of thickness less than a half

wavelength. Three-inch blankets in the cylindrical section combined with 3.25 or 3.5-inch blankets in

the nose section can reduce the RF field 'peaking' effects at certain frequencies. Blanket thickness

should avoid even number multiples or divisions of the RF wavelength. This will ensure a lossy

blanket area that will limit the RF field to a relatively low value at a wide band of frequencies.

6.4 MAKE THE MELAMINE FOAM CONDUCTIVE

Implementation of the proper conductivity for the foam will dramatically reduce the RF fields at virtu-

ally all frequencies. The conductivity can be increased by mixing graphite, carbon, or other conductive

powder with the melamine.

The design of a blanket that would give large loss when installed on aluminum should also provide

large loss for the composite fairing since the composite is more lossy than aluminum. The analysis

technique described in Appendix D can be used to perform trade studies to ensure a good blanket

design. The following activities will ensure that design:
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. Determine the thickness, dielectric constant and 1o,,s tangent for the candidate cover sheets

for the acoustic blankets. Application ofAppendice_ D and E equations should allow for the

design and selection of an appropriately lossy cover material.

. Determine the dielectric constant and loss tangent for the proposed foam material for the

blankets. Use the Appendices D and E technique to establish the proper material and thick-

ness.

3. Use the technique of Appendices B and D to compaie the fairing RF fields for each candidate

blanket design.

The technique of Appendix E can be used to determine the RF characteristics of the composite fairing

wall. Use the equipment which measured the blanket cover sheet properties to determine the complex

dielectric constant and loss tangent for the various layers of the composite fairing wall, then use Ap-

pendix E to compute the effective RF impedance for bare composite wall surface.

7.0 CONCLUSIONS

The analytical technique presented in Appendix B is shown to be relatively simple. The greatest effort

is in determining the surface areas and type of materials involved. The equations presented for the

complex values of media characteristic wave impedance and the magnitude of the incident wave are

exact and simple. The model can account for the presence of items comparable to the acoustic blankets

by using the technique of Appendix D to define the effective surface impedance. The simplicity of the

concept and its computation suggests it is a viable technique for first order quantification of the RF

fields inside any enclosure. The value is an equivalent wave which would dissipate the transmitted

power into the surface areas. In the real world, large standing waves exist which are approximately

twice the magnitude of the equivalent incident wave.

The technique can provide a methodology for evaluating various blanket designs for the composite

fairing and could be used to establish the RF characteristics af the fairing composite surface.
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Recent requests from a number of spacecraft projects to operate their transmitters during launch processing

and throughout the launch itself, has led us to investigate the nature of the RF field created within the

fairing envelope under such situations. This analysis was further prompted by data obtained from another

OLS project, indicating that significant amplification of the electromagnetic fields occur when a transmit-

ter radiates inside a conductive enclosure such as a payload fairing.

In an attempt to establish some limits on the field strengths experienced, first consider the case of no fairing

at all. For equipment in view of an isotropic transmitting antenna, a reasonable estimate of the field

strength will be given by the free space radiation formula:

¢ = p,/4n-r. 2 (A1)

Where" = Power density (watts / m2),

P, = Transmitter power (watts), and

r = Distance to the source (m).

and E = _ (A2)

Where: E = Electric field strength (volts/m), and

377 = impedance of free space.

If necessary, these equations can be modified to account foi antenna gain and directivity, transmission

losses, etc. See any good text on antenna theory, such as "Antennas" by John Kraus (McGraw-Hill, 1950)

for a complete treatment of this subject. These equations provide a reasonable estimate of the lower bound

on the field strength at any given point. To get some idea of the magnitudes involved, a quick computation

for a point 1 meter away from a 1 watt isotropic source (in free space) gives us a power density of .079

watts / m 2 and an electric field strength of 5.5 volts/m.

If the entire system is enclosed within a conductive surface (])ayload fairing), one intuitively expects the

field strengths to increase. Instead of radiating out into free sl_ace, the transmitter power is trapped within

the enclosed volume. The power is reflected back and forth from the conductive surfaces enclosing the

volume, with higher conductivity equating to greater reflectior. The energy contained within the fields will

continue to build up until the power lost into the enclosing :mrface comes into balance with the power

supplied by the source. This is a rather simplistic restatement )f the Poynting Theorem. In this model, the

only mechanism for energy loss is through ohmic heating in _e enclosing walls or other objects contained

within the enclosing surface. In Ramo and Whinnery's "Fi.flds and Waves in Modem Radio" (Wiley,

1959) 241, it is shown that the average power loss in a plane c(,nductor can be directly computed, knowing

the strength of the incident field and the surface resistance of _e conductor using the following equation:

whe re:

w, = (1/2)g, lJI== (1/2)R, Hi, c 2

L

J=

2=

nitlC ""-

Average power lost in conductor per Lnit area,

Surface current (amps / meter),

Surface resistance (ohms), and

Incident magnetic field intensity (aml:s / meter).

(A3)
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The surfaceresistanceis frequencydependent(skineffect) andmaybecomputedgiven thefrequencyof

interest and the conductivity of the material. For aluminum, Rs = 3.26E-7 47.

It should also be noted that for a perfect conductor, the conductivity becomes infinite and the surface

resistance goes to zero. For aluminum at S band, frequency f= 2.2E9, we compute RS = .015 ohms. To be

precise, this is just the real part of the surface resistance. There is an imaginary component that can be

computed as well. A full treatment of skin effect and surface resistance can be found in Ramo and Whinnery

(Op. cit.) or Magnusson's "Transmission Lines and Wave Propagation" (Allyn and Bacon, 1965).

Inspecting the power loss equation, we see that to sustain a given power loss, the incident field must

increase as the surface resistance gets smaller. In the case of our fairing, as the walls become more perfect

conductors, increasingly large fields will be required to dissipate the power being supplied by the transmit-

ter. In the case of perfect conductors, the fields grow infinitely large. This confirms our intuitive feel for

the problem. Enclosing the system with a conductive surface causes the fields to increase. In a way, this is

somewhat analogous to the interior of a microwave oven. However, an upper bound of infinity for the field

in our enclosed volume is not very helpful. A model that establishes a more reasonable upper bound needs

to be developed. To do this, we shall account for the fact that the enclosing surface is a non-ideal conductor

and ohmic losses will occur. We then strike a balance where the field strength rises to the value required to

dissipate the power being supplied. Power out equals power in.

Returning to the equation for the power loss per unit area in a conductive surface, rearrange the terms to
solve for Hinc

IHo,cl2 = 2WL/R s and

= (A4)

For a plane wave normally incident on a perfect conductor, boundary condition analysis shows that the E

field is zero and all the energy is contained in the magnetic field. To meet this condition, the value for Hin c

must be twice the peak value of the H field in free space. See Ramo and Whinnery (Op. cit.) 285, for

discussion of this topic.

What follows is based on the assumption that the energy in the enclosed volume will be made up of

randomly directed plane waves, uniformly distributed within the volume. In essence, a uniform energy

density impinges on the walls. An equivalent wave can then be computed that will produce the same

energy loss in the surface. This new wave can be viewed as the sum of the normal incident components of
all the random waves.

Recalling that:

]H_,_I = 2H 0 and

In0l-- (a5)
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For plane waves in a perfect dielectric, it has been shown that E and H are related by Z0:

H= E/Zo;
where

Zo=._/_/e,

which is 377 ohms for free space.

[E0[=z0,/w  77 ,

Substituting (A6) into (A5) results in:

(A6)

(A7)

For plane waves, the energy stored per unit volume is the sum of the energy in the magnetic field and the

energy in the electric field. This has been shown to be:

U, = U,. + U_. (A8)

U= = U_. (A9)

In free space:

Where

U, = cX2/2 (Electric Field) and (A10)

U,, = pH2/2 (Magnetic Field). (All)

In other words, the uniform energy density within the volune contains the same electric field energy

density as a wave of magnitude E0 everywhere within the volume. This concept has been used in the

analysis of RF test chambers. The object of these chambers is to create a space containing large, uniform

electromagnetic fields. For further discussion, see IEEE Transactions on Electromagnetic Compatibility,

February 1990.

Now examine a numerical example for a simple case of a I w;ttt isotropic source enclosed by a cylindrical

surface 3 meters in diameter and 13 meters high. This is a cru]e representation of the volume between the

top of the fuel tank and the top of the fairing. The enclosing surface area (A) can be found to be 136.66 m 2.

The power delivered by the 1 watt source must be absorbed b) the enclosing surface. Assuming a uniform

power distribution, the average power density at the surface faust be:

W L = < P, >/A= 1 / 136.66 = 0.00732 watts / m 2. (A12)

Computing the equivalent wave that will produce this power loss at the surface:

Where Zo = 377 ohms, Rs = 0.015 ohms, atd W L --- 0.00732 w/m 2 with

gives

Eo = Zo.x/WL/2R, ;

E 0 = 377_/0.00732/((2)(0.015)) = 377 (.494) = 186.2 vim.

(A13)

(A14)
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Thisresultshowsusthatevenmoderatesourceswill createlargefields when fully enclosed by a conduc-

tive surface. It also shows that the model needs to be refined a bit more.

Insert a solid cylinder 2 meters in diameter and 10 meters high within the previously defined volume. This

becomes a crude representation of second stage/spacecraft stack. This solid is defined as being electrically

connected to the original enclosing surface. This added solid provides additional surface area (for the

power to be dissipated into). A quick calculation reveals that the added solid has a surface area of 69.11 m 2

associated with it. Thus the total surface area into which the power is being dissipated becomes 205.77 m e

and WL = 1 / 205.77 - 0.00486 w/m 2.

Thus for: Z0 = 377 ohms, Rs = 0.015 ohms, and W L = 0.00486 w/m 2 with

gives

IE0f=z0 ;

E 0 = 377_.00486/((2)(.015)) = 377 (0.402)= 151.7 vim. (A15)

This result certainly warns us against radiating inside a fully sealed conductive fairing. It also gives us

some indication of the dominant factors in this process which are: the total surface area absorbing the

incident power; the surface resistance of that area; and the magnitude of the source.

There is one final refinement that we can add to this model. It is a RF window, or aperture, in the enclosing

surface. Here, the power supplied by the source is equal to the sum of the power lost out the aperture, and

the power absorbed by the walls.

<P,>=(A,,,,c)(W_,f)+(Aap,r)(W,,per) (A16)

It has been shown that the surface energy density for a plane wave in free space is given by the Poynting

vector S = E x H, and that the average value of the Poynting vector is:

<s >:(1/2)(E2/z) (A17)

Thus <S> describes the energy density of the waves leaving the enclosure via the aperture.

Wa.,.=<S>=(1/2)(F>/Z) (AI8)

Recalling from earlier, the surface loss is given by

Thus"

2 2=(1/2)(R,12Ho)'--(2)(R,)(eol/z).

< >=

(A19)

(A20)
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Rearranging:

Thus;

I 01 >/((=<P_ 2Asu,¢ Z 2 + 1/2 Aa_ , ,, . (A21)

Eo = _< Pt >/((2Asurf(Rs)/Z2)+((1/2)(Aaper)/Z)) . (A22)

Returning to our crude model, we insert a 0.5 m z aperture in the enclosing surface which is an approximate

value for a typical RF window area.

Thus: Aaper = 0.5 m 2, Asurf = 205.27 m E,

Z = 377 ohms, Rs = .015 ohms, and Pt = 1 w.

Solving:

E 0 = _/1/(4.33E- 5 +6.63E- 4) = _/7.06E-4, and

E 0 = 37.6v / m. (A23)

This result reveals the significant effect of an aperture in the enclosing surface. It also provides a clue for

the absence of reports of effects from RF radiation in the fair ng in the past. It would seem that the field

strength under such conditions is probably greater than the qualification limits to which the equipment has

been tested. However, they are probably not sufficiently large to overcome simple shielding techniques,

shadowing, and inefficient coupling mechanisms.

Recalling that this analysis began with the purpose of establishing a bound for the field strength within the

fairing, we have determined the following:

• The field strength at any given point within the fairi:lg envelope is greater than the value deter-

mined by the free space radiation formula.

° The field strength is les____sthan the value determined by a balance between the power supplied by the

source, and the power lost in the walls and apertures.

It is our judgment that the energy balance approach provide _ a reasonable estimate of the field strength

while also yielding a conservative upper bound.

A-6



APPENDIX B

Derivation of Equation for Electric Field Inside an Enclosure

by

Jerry Reddell

B-1



B.1 INTRODUCTION

This Appendix defines the equations used to calculate the RF field strength resulting from RF transmission

within an enclosure. The surface of the enclosure (fairing) i_, in general, an area of several materials.

Developing the equation for the RF field inside the enclosure, requires an understanding of the boundary of

two media. One media represents the air (media of the enclosed volume). The other media correlates to

the surface of the enclosure. Once an understanding of the RF wave relationships for the boundary is

reached, the solutions for the field inside the enclosure can be defined for the more general situation where

several different materials make up the surface of the enclosure. Equations for the electric field intensity,

the magnetic field intensity, and the power are derived. The equations are in terms of the incident wave's

electric field intensity and the characteristic impedances of the surface media. The approach is:

a) develop the boundary equations for two media,

b) define the equations for the RF waves in each media.

c) define the equations for RF power in multiple materials, and

d) define the equations for RF field in an enclosed volume.

The equations for a media's intrinsic wave impedance and characteristics are developed in Appendix D. It

is important to remember the goal is to determine the relationship between the RF power absorbed by the

enclosure surface area and the incident RF field within the enclosed volume.

B.2 EQUATIONS FOR THE BOUNDARY OF TWO MEDIA

The equations defining the RF waves in two media are needed. Media 1 represents the enclosure surface

material. Media 0 represents the internal volume material. Figure B-1 illustrates the boundary of the two

media at z--O which is normal to the z-axis. An RF wave traveling along the z-axis in media 0 is incident

upon media 1 (which acts as a plate) at z = 0. Z is negative ill media 0. Three waves are of concern: the

incident wave in media 0, the reflected wave in media 0, and We transmitted wave in media 1. This section

develops the equations for the electric field (E field) intensity and the magnetic field (H field) intensity at

the boundary of the two media. These fields can be written in terms of the incident wave electric field

intensity and the wave impedance of the media.

Media 0

(incident wave)

E_, Hio

E r, Ho

fAedia 1

E_, H_

_- (transmitt 3dwave)

(reflected wave) i

z=O

Figure B-1. RF waves at the boundary of two media.
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B.2.1 BOUNDARY CONDITIONS OF MEDIA 0 AND MEDIA 1

This section derives the coefficients which relate the reflected and transmitted waves to the incident wave

fields. The boundary conditions require that the following relationships exist at the boundary:

a)

b)

The tangential component of the electric field intensity is continuous across the boundary. This

means:

nxvz 1 - = O,

V V_t V. V 0,.n 
v. v V_

E'o + E2: EI ; (B1)

The tangential component of the magnetic field intensity is continuous across the boundary. This

means:

nx_ n 1 - = O,

V I V t V. V R \

nx[H_ - H_ - H_ )= O, and

vi v r vtH'o+Ho=Hi.

The relationship between the electric field intensity and magnetic field intensity within a media is:

IEI
m

]HI 7"/= intrinsic or wave impedance of the media.

Using equation (B3) and the boundary conditions the following relationships are determined:

e/
-H-_-_=r/o, Incident wave fields in media 0;

= -r/o, Reflected wave fields in media 0; and
Hr

Transmitted wave fields in media 1.

B.2.1.1 Determine the Reflected E Field

Solve equations (B4), (B5), and (B6) for the H fields and substitute into equation (B2) to get:
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Eio E_ _ E_ 1

(E'°-E;) (B7)

Solving for the transmitted E field gives:

E_ = 7/0

Substituting (B8) into equation (B 1) gives:

(B8)

_ _ _i -t- _r __ 771(E i g r) _1 i 771 E ro- e'°--ooo.
(B9)

Collecting terms:

Eo OlEo--/_o _lEo and

770 770

Therefore, the reflected E field is related to the incident E field by:

(B 10)

_r _ O1 -- 770
.

_/- % + 771
(Bll)

This is the familiar reflection coefficient term presented in the text books. This defines the relationship of

the incident and reflected waves within the media "0," at tie boundary; the traveling wave within the

media is discussed in section 13.3.2.1.

B.2.1.2 Determine the Transmitted E Field

Solve equation (B 11) for the reflected electric intensity:

(B 12)
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Substitute into equation (B 1):

_./7o + 771

So that the transmitted coefficient for the electric field intensities is:

2,71
rio+71"

(B13)

(B14)

B-5

This is the term normally presented in texts. Remember, this coefficient only defines the relationship at the

boundary. For the more general case of a traveling wave within the media see section B.3.3.1.

B.2.1.3 Determine the Reflected H Field

Solving equations (B4), (B5), and (B6) for the E fields and substituting into equation (B 1) gives:

rloffli - rloH_ = rllffI[ = rlo( fli - fflr ). (B15)

Solving for the transmitted H field:

0316)

Substituting into equation (B2):

/r_/a t./_r _. /._[ __ /7o(/._i _/._r)and
r/l_ o

(B17)

Therefore the reflected H field is related to the incident H field by:

/q2 7"1o- r/, (B 18)
/q_ rio +rb"

This is the reflection coefficient normally presented in texts. Remember, this coefficient only defines the

relationship at the boundary. For the more general case of a traveling wave within the media see section

B.3.2.1.



B.2.1.4 Determine the "firansmitted H Field

Solving equation (B 18) for the reflected magnetic field intensit ¢ and substituting into equation (B2) gives:

3 -,+r/1

(B19)

Solving for the transmission coefficient for the magnetic field intensity:

/I_ 27/o 0320)
-_,i -
11'o 77o+ rll

This term is the form presented in text books. Remember, this coefficient only defines the relationship at

the boundary. For the more general case of a traveling wave within the media see section B.3.3.1.

B.3 DETERMINE THE EQUATIONS FOR THE WAVES IN EACH MEDIA

Derive the equations defining the wave propagation and boundary conditions. Assuming a RF wave is

traveling in (media 0) and incident upon a plate (media 1), the conditions and relationships for the incident,

reflected, and transmitted waves at the boundary between the media 0 (air) and plate will be developed.

The wave is traveling along the z-axis.

B.3.1 DERIVE THE EQUATIONS FOR THE INCIDENT WAVE

B_3.1.1 Components of the Incident Wave

The components of a wave are the electric field intensity anc the magnetic field intensity.

wave, which is traveling in media 0, is defined by:

The incident

_i(Z,t ) i -VotZ jcot-.
= E'oe e a x, (B21)

_i(z,t) = Hioe-rolzeJ°_ay.

The wave components can be related using the relationship bet ween the electric and magnetic fields within

a media. For the wave in media 0:

(B22)

The incident wave is therefore defined by substituting equation 0322) into equations (B21) giving:

_io(Z,t ) = _ioe-r°ZeJ°_t x and 0323)
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v= -- = ( o)e e a,_(z,t) o . __0_jo,v (B24)

Where the term (rl0*) is the conjugate of the media's complex impedance. Since the conjugate of the

product of two complex numbers is equal to the product of the conjugates of each of the complex numbers,

the conjugate of the magnetic field is determined directly from equation (B24) as:

H'o(z,t ) : _ rlo)e-r°ZeJ_,. (B24a)
t,17ol)

B.3.1.2 Incident Power

A wave, composed of complex phasors, has its instantaneous power per unit area defined by the cross

product of the electric field and the conjugate of the magnetic field. Therefore the instantaneous power per

unit area traveling in media 0 is the product of equation (B23) and (B24a):

"v_ V V

So _ _ i i •Eo(z,t)xH'o(z,t) = _ CLl(r/0)e-Er0ZeS2°'_ 1_21,,,e-2rOZen_Va

t,lOoi) :t_y '°' _
(B25)

For sine waves, the average power per unit area is defined as one half the real part of the instantaneous

power, which gives from equation (B25):

(_>=lreaIIll °_12](rlo)e-Z'°Ze'E°_z .

ttlOol) zj
(B26)

The average power per unit area incident on the plate is therefore the average power traveling in media 0 at

the boundary. It is calculated using equation (B26) with z = -0:

(_> =_realSliEiolillTo _-2,oz_l = lCEi2_re -, ,

: )( )" uz I 2t_J al[rl°)"
(B27)

The average power incident on the plate at the boundary is given by the product of equation (B27) and the

surface area of the plate (media 1):

v i 2

P'= (S)A,.rr = _real(71o ). (B27a)
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B.3.2 REFLECTED WAVE EQUATIONS

B.3.2.1 Components of the Reflected Wave

The reflected wave (also traveling in media 0) is defined by:

Er(Z,t) = E_er°ZeJ°JV x and

V

gr (z,t) = Hoer-)'°z_J°jtv__y •

(B28)

The reflected wave components traveling in media 0 can be determined using the relationship between the

electric and magnetic fields within a media. For the wave in media 0:

_°

0o
(B29)

The components of the reflected wave at the boundary are related to the incident wave components by

using equation (B29) in equation (B 18) giving:

H'= rl0-rit =

o + ri1

V.

ri0 - ri1 E_

rio + ri1 rio
(B30)

Equation (B4) states:

- \ 00 + 01

The reflected wave is therefore defined by substituting equation

(B28) giving:

HV(z,t) ( tlo-rll )v. • v
= Etoe_'OZeJ°_ay.

(B31)

(B30) and (B31) into equations

(B32)

The conjugate of the magnetic field is:

H_(z,t)" : (rio- ri,)" rio (rio_-_[_ +_ _+ ri,)]_,
er°Z eJ_" v and

y
(B32a)

Eo(z,t ) (/71-7/o3 v. • v
Vr _ __ _ E'oerOZe_°_ax"

-\00 +01
(B33)
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B.3.2.2 Reflected Power

A wave, composed of complex phasors, has its instantaneous power per unit area defined as the cross

product of the electric field and the conjugate of the magnetic field. Therefore the instantaneous power per

unit area reflected is the cross product of equation (B33) and (B32a) giving:

v v v . v 2 - ril 770 e2_°_ej2_'v (B34)S; = E_ (z,t)xH_ (z,t) = - E'o , _ z.
1001

For sine waves, the average power per unit area traveling in the plate is defined as one half the real part of

the instantaneous power, which gives from equation (B34):

1(l 0(sV)=-2_rio +rill 7702 {e az}real{rio }. (B35)

The average power per unit area reflected from the plate is therefore the average power at the boundary of

media 0 and media 1. It is calculated using equation (B35) with z=0:

1( IrI° - riIII2 E_ 2 real{rio }. (B36)

The average power reflected from a plate at the boundary is given by the product of equation (B36) and the

surface area of the plate:

1 fflri0 --771{/2 EV I as.¢real{rio}. (B37)Pr : ( sV ) Asu'f - 2 _ rio "[- ril ) rio

B.3.3 DETERMINE THE EQUATIONS FOR THE TRANSMITTED WAVE

B.3.3.1 Components of the Transmitted Wave

The transmitted wave, traveling in the plate (media 1), is defined by:

Et(z,t) = E[e-rlZeJ_ x and

Ht(Z,t) = H[e-rlZeJ_Vy .
(B38)

The wave components entering the plate can be determined using the relationship between the electric and

magnetic fields within a media. For the wave in media 1:

/-_ -- --./_ (B39)
rh
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The componentsof thewaveenteringtheplateat thebounda_arerelatedto the incidentwavecompo-
nentsby usingequation(B39)in equations(B20)giving:

H_=( 20--0- )/-_/=(. 200- )}E/- 2E_ . (B40)
_,r/0+ 01 _.q0 + 01 r/o r/o + 11

Equation (B14) states:

_=(-2#71-)_o" (B41)
crt0 +r/1

The wave within the plate is therefore defined by substituting equation (B40) and (B41) into equations

(B38) giving:

C v /z, 2Zon (Z,t) = e-_'lZeJ_

\ 770+ rh

The conjugate of the magnetic field is:

( V., \

v, , 2E' o (rio + rli)le_rlZeJO_V

H (z,t) = _--_o+_/-_ ) rand

c v.)
B3.3.2 Transmitted Power

(B42)

(B42a)

(B43)

Figure B-2 illustrates the incident, reflected, and transmitted power per unit area at the boundary of media

0 and the media 1 plate made of one material.

Sio

mediaO

Sro

Figure B-2. RF power at boundary with a single material.
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A wave, composed of complex phasors, has instantaneous power per unit area defined as the cross product

of the electric field and the conjugate of the magnetic field. Therefore, the instantaneous power per unit

area traveling in the plate is the cross product of equation (B43) and (B42a) giving:

v v v 12
, rhe-2r,_eJ2_v.

S( = E, (z,t)xn' (z,t)* = _ rio + ri, ) z
(B44)

For sine waves, the average power per unit area traveling in the plate is defined as one half the real part of

the instantaneous power, which gives from equation (B44):

V

e-2r'Z azreal{1J1}. (B45)

The average power per unit area absorbed in the plate is therefore the average power entering the plate at

the boundary of media 0 and media 1. It is calculated using equation (B45) with z = +0:

2 _V i 2
v 2 E ° aV real{rl, }.1 ( 2_;! azreal{rl,}= _ ---2

(sV')=?/00+011 00+., (B46)

The total average power entering media 1 at the boundary is given by the product of the power per unit area

and the surface area of the plate:

real{rll }. (B47)

V. 2

P' v = 2E:I A_:(S,)A ¢ rio +01

B.4 POWER FOR A PLATE OF MULTIPLE MATERIALS

Since the internal surface area of an enclosure (fairing/vehicle) is comprised of several different materials,

it is necessary to consider the affects of replacing the single plate material with a plate made of several

materials. This section addresses this condition.

Replace the media 1 plate at the boundary by a patchwork of several adjacent plates of different material as

illustrated in Figure B-3. The incident power, the reflected power, and the absorbed power can be derived

in terms of the incident E field and the impedances of the various materials using the equations in section

2.2.
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B.4.1

S t

St2

Siof

mc_:liaZ

" S;

Figure B-3. RF waves at the boundary with several materials.

POWER OF THE INCIDENT WAVE ON MULTIPLE MATERIALS

The total incident power on several different plates is the sum of all the power incident on each plate, or

using equation (B27a):

v i v i v i

P_ = ( S 1 )Al_surf + ( S_ )A2_surf + . . .( S_ )Ak_su_f and

k=mr, (s;)a,_,°,,.
k=l (B48)

The magnitude of the incident wave is the same for all plate,, although each plate would absorb different

amounts of power. This means the incident electric field is constant for all plates, therefore substituting

equation (B27) into equation (B48) and simplifying gives:

EVio 2 k=m I
P_ -20012 real(rlo )(k___lAk_,, e . (B49)

Equation (B49) is the total of the average power which is incident on all plates.

B.4.2 POWER OF THE REFLECTED WAVES FROM MULTIPLE MATERIALS

The total power reflected from several different plates using, equation (B37) is the sum of the reflected

powers from each plate, or:

Vr v r vr

Pf = ( Si ) Al_surf + ( S_z)A2_s,, ¢. +.. "( S_ ) A,_ ,u¢" and (B50)

1 k=m V

P; = _ _= real(S;) A*-s"_f .
(B51)

The incident wave magnitude is the same for all plates although each plate would absorb different amounts

of power. This means the incident electric field is constant for all plates, therefore substituting equation
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(B36) into equation(B51)andsimplifying gives:

pr=EViol2real{rlo}(k=mA (It/0 - r/_ I/22i 02 (B52)

Equation (B41) gives the average power reflected from all the materials.

B.4.3 POWER ENTERING THE SEVERAL MATERIALS

The total power absorbed by several plates of different materials using equation (B47) is the sum of all the

power entering each individual plate, or:

vt v t
P_ : (S 1)Al__,ry +(S_)AE_surf +...(s_)ak_su,f and

k=m

P_. = _ (,_:)Ak_surf" (B53)
k=l

The incident wave magnitude is the same for all plates although each plate would absorb different amounts

of power. This means the electric field is constant for all plates, therefore substituting equation (B46) into

equation (B53) and simplifying gives:

v 2[_A__s.¢real{7_} I (B54)

Equation (B54) gives the total average power entering all the materials and is the key to solving for the
field inside an enclosure.

B.5 DETERMINE THE ELECTRIC (E) FIELD IN AN ENCLOSURE

Consider an enclosure where the surface area is made up of several different materials. An antenna is

radiating within the enclosure. RF energy will be reflected from the surface and will increase until the

incident power on the surface reaches a level where the surface absorbs the amount of power being radi-

ated by the antenna. The magnitude of the incident wave is first determined and then the equivalent E field

standing wave inside the enclosure is determined.

B.5.1 VALUE OF THE INCIDENT WAVE IN THE ENCLOSURE

For M number of media making up the enclosure surface, the magnitude of the incident wave which would

give the power loss is therefore determined by solving equation (B54) for the electric field giving:

=12Ak-" rea[irl° •
(B55)
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This equation is exact, where P is the power in watts radiated by the antenna. However in evaluating the E

field, care must be exercised to properly evaluate the real part of the impedance ratio term.

B.5.2 STANDING WAVE IN THE ENCLOSURE

In our problem the equivalent RF wave incident upon the surface is producing the loss of energy. A re-

flected wave is also present within the enclosure. The reflected wave and the incident wave combine to

form a standing wave within the enclosure. A computation of the standing wave resulting from the reflec-

tion from the plate is desired.

a) In the air, the incident and reflected wave combine to form a standing wave defined by:

b)

Since:

[E(z, t) = e j(°x-olz) + e j(_+olz) and

v . V. . V . V

E(z,t) = e'°X[E'oeJ(-fl'z) + Ey(a'_)]ax.

Solving in terms of the incident wave components:

vEo_ =- r/0-r/1 v..
+ 7/1

(B56)

(B57)

then equation (B56) becomes:

E(z,t) = EioeJ°X e j(-_'z) (B58)

Using Euler's equation •

for e i(flz) and

e j" - cos u + j sin u

and (B59)

e -j" = cos u - j sin u.

e i(-_z) in equation (B58) results in:

rlo+ cos(flz)+ j sm(i_z) a x.
E(z,t) =Eiej°_o _,rlo+ cos(flz)-jsin(flz))- +

Collecting terms and simplifying gives:

EV(z't)=_°eJ°X[(rl2_l)c°s_z-(k, rlo+rllj2rl_)jsin_zlaV,.
(B60)
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Using Euler's equation for e jax gives:

v v. I( 2111 ]cosflz-/ 211°- ]j sin flzJVx.E(z,t) = E'o(COSO3t+jsinog ) 11o +01 _,11o +111

Equation (B61) gives the general computation defining the standing wave inside the enclosure.

reflective boundary occurs for values of 01 = 0 and equation (B61) becomes:

/_(z, t) ___-2/_ sin(fltz)[sin(ag ) - j cos(o3t)]aVx.

Basically, the standing wave inside the enclosure is twice the incident wave magnitude.

B,6 CONCLUSION

(B61)

A highly

(B62)

Equation (B55) can be used to calculate the RF field strength inside an enclosure. The equation uses the

surface areas of different materials and the complex impedance of the materials. Appendix C provides the

equations for the complex impedance and intrinsic characteristics of materials. The standing wave in the

enclosure has an upper boundary which is approximately twice the magnitude of the incident wave calcu-

lated by equation (B55). It should be noted that the value of the electric field given by equation (B55) is the

magnitude of the wave. It should be multiplied by 0.707 to determine the RMS value.
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APPENDIX C

Derivation of the Equations for a Media's
Intrinsic Characteristics

by
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C.1 INTRODUCTION

An exact computation of the intrinsic characteristics of diffenmt materials or medias is needed when per-

forming assessments of the reflections and transmission of electromagnetic waves in a system containing

several materials. Many textbooks give approximate equations which are applicable to only one type of

media and the form and units of the equation varies from textbook to textbook. In many cases considerable

confusion exists on the meaning and applicability of the results to a particular problem. This appendix

derives the generic equations for the characteristics. The equations defining the wave impedance and the

wave propagation are developed. Metric units are used thrc:ughout. A media's intrinsic characteristics

define the relationships between the electric and magnetic portions of the wave as well as the propagation

losses and velocity within the media. A media's intrinsic characteristics depend on the media's physical

properties:

/_ - permeability; (henry per meter),

e - permittivity; (farad per meter), and

or-- conductivity; (mho per meter).

The characteristics also depend on the frequency of the wave:

co - frequency; (radians per second).

The propagation characteristic is related to three other imporant terms: (1) propagation velocity, (2) skin

depth, and (3) wavelength; which are also derived from the propagation characteristic equations.

C.2 WAVE IMPEDANCE (7/)

The wave impedance or intrinsic impedance defines the relationship between the magnetic portion of the

wave and the electric portion. It is defined as:

(c,
r/- /_.

The wave impedance can be derived from these two Maxwell equations:

Vx/-1= J_ +--_--- and (C2)

9_
Vx/_ = - -- (C3)

oat"

But

Jc =trE, (C4)

b = e£, (c5)

/] = At/4, (c6)
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where

Differentiating

= EeJ, _ and /-) = He j°_ .

equations (C5) and (C6) with respect to time (t) gives:

-- --E_--E
Ot Ot Ot oat

- jaleEe _o, = j al_ and

o3_) o_(C.F.) o3(E,) o_(Ee j°_ )
- - _, e - jo)_Ee jar = jo_E.

Ot Ot Ot Ot

(C7)

(C8)

Substituting equations (C4) and (C7) into equation (C2), and substituting equation (C8) into equation (C3)

gives:

_'x/-1 = (a + jo_)/_ and (C9)

_Zxg:= -ja_la_.

Solving equation (el) for E gives _ = 7//) and substituting into equations (C9) gives:

_'x/-) = (0" + jtoe)r//-11 and (clo)

Solving equation (C11) for the cross product gives:

(C11)

(C12)

Therefore equation (C12) and equation (C10) are equal and •

_x_--_z___,i_ _i(o+jo_). ,1_ (C13)

From which is obtained:

_-_[ = (or + jtoe)r/.

From which comes:

(C14)

(c15)
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Therefore the wave or intrinsic impedance becomes:

7"1= rig + Jrii = _YJo)!"t /(a + ja,_) . (C16)

This is the form of the equation which is normally presented in text books. A more desirable form can be

derived. Dividing numerator and denominator by o_e gives:

Finally:

(c17)

The complex form under the radical requires additional operations to find a value for the impedance. This

can be accomplished by determining the absolute value of the impedance. Let:

Putting A in equation (C18) becomes:

ri = A_[1 + j(a//o_)]. (C20)

Multiplying the term in the radical by the conjugate of the u rm gives:

ri= A_[1 + j(a//cot_)]* [1-j(_//o_)]Z tan-'(a//o._)and (C21)

Therefore the absolute value of the wave impedance is:

'ril: AI_[12 + (_/'/0_):] "

( )21 1L- tan-'(a//o_). (C22)
2

(C23)
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Now insertingequation(C19)for A gives•

Themagnitudeof theassociatedangleis:

0 = _ tan-_(_//oge) = (1) tan-l(_).

If
cr A

A=tan-l(_-) then 0=-Tand

(A) icos(2)+l Ic°s(tan-l!_]) +1cos(0)= cos =

But

cosa-cosftan0._

_/G 2 + 092E 2

Therefore equation (C26) becomes:

(C24)

(C25)

(C26)

(C27)

COS 0 =

1+ +1

The real part of wave impedance is therefore:

(C28)

1/ 1+

oR = 171cos0 = 177

+1

=1,71 (C29)
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Inserting equation (C24) for the absolute value of the impeda ace gives:

Y/R -- (c30)

Finally the real portion of the impedance is simplified to:

/_R -- (c31)

The imaginary part of wave impedance is similarly derived:

cr A
-1

If A = tan (_--) then 0 = _ and using equation (C27) tn the following gives:

sin0 = sin(A) = _ c°s(A)-I - (C32)

and the imaginary part of equation (C16) becomes:

7/i =1 r/l* sin 0 = (C33)

Equations (C31) and (C33) provide exact computations of th_ real and imaginary portions of the intrinsic

or wave impedance while equation (C24) provides the exact c_,mputation for the absolute magnitude of the

impedance for any material.
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C.2.2 WAVE PROPAGATION CONSTANTS

The propagation of a wave through a media can also be determined using the equations (C9) which are

repeated here:

_7x/4 : (rr + jeo/z)/_ and

_TxE : -j0)#/_ •

(C34)

Solving for the electric field and magnetic field gives:

(c35)

Substituting equations (C35) into equations (C34) results in:

Vx(fTxE):-jogl.t(rr+jeoe)F.and

W(VxC_):-j,,,_,(o+jo_)_.

(C36)

(C37)

The left portion of equations (C36) and (C37) are defined by the identity:

so equations (C36) and (C37) become:

V(V*E)-V2L"=-jo)/z(o"+jo._)Eand

V(V.F1)-V:n : -j,,_,(o+jo_)_
(C38)

Also from Maxwell's equations:

V */9 = p (C39)

But

/9 = cE and

v._:v._:e(v._):p
(C40)

Therefore:

V * _" = --p . (C41)

Since there is no space charge in the region, then equation (C41) gives:

0
Vo/_- p- -0. (C42)

E c
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AnotherMaxwell equationis:

but

andtherefore

V.B=O

So

V.I/=o

Therefore using equations (C42) and (C46) in equations (C38) reduce to:

V2/_ = jco/.t(rr + jo_)/_ = y2_ and

V2/4 = ja]bt(rr + jo_)/_ -= y2/_.

From equation (C47) the propagation constant y is defined as:

y2 = j(o/.t(rr + jr._)

and therefore:

y = a + j_ = _j(.o/.L(O" + j(_e) = _/(.oN(jo'-- o_).

This is the equation normally given in text books for the propagation constant.

useful form will now be developed.

Let

f

(C43)

(C44)

(C45)

(C46)

(C47)

(c48)

(C49)

A more desirable and

(c50)

A = (.o_/.a¢. (C51)

Substituting A into equation (C50) results in:

y=A_[[1-j(_/./o_)]. (C52)

Multiplying the term in the radical by the conjugate of the t_rm determines the absolute value giving:

y= A_[,- J(_//oJe)] * [1+ j(_//a_)]Z tan-l(-_//a_ ) . (C53,

c-8



Performing the multiplication:

g = A 12+ / tan -t - and

Therefore the absolute value of the wave impedance is:
F

I_'1 = A 12 + .

Substituting equation (C51) into equation (C56) gives:

Igl=_ e i+

The angle between therealand imaginary pans isdeternJned from equation (C55):

If A=tan (toe 2 2
-1 __) then 0=----tan -1

and the phase shift constant which is defined as the imaginary pan of the propagation constant is:

Since

then

Therefore substituting equation (C61) into equation (C60) gives:

l+ _) +1

cos°-- I •

(C54)

(c55)

(c56)

(C57)

(c58)

(C59)

(C60)

(C61)

(C62)
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Then from equations (C62) and (C59) comes:

/ ] 2+,
1 1

f = 2 +1 = 'y / k--w"_

Using equation (C57) for the absolute value of propagation constant gives:

(C63)

This reduces to give the phase shift constant as:

(C64)

Similarly the attenuation constant is defined as the real part of the propagation constant:

(C65)

a=ycos(0)=ycos(2 A)=iyisin IA)"

if A = tan-_( tr ) then:
O)E

The attenuation constant can be calculated from:

(C66)

a =ly I'sin0 = c0 /_ 1+ - . (C67)

C-10



Equation (C65) gives the exact computation of the phase shift constant in any material while equation

(C67) provides the exact computation for the attenuation constant for any material.

C.3 OTHER CHARACTERISTICS

Three other terms can be determined from the propagation constants. They are wave velocity in the media,

wavelength in the media, and skin depth.

C.3.1 WAVE VELOCITY IN THE MEDIA

The velocity of a RF wave in a media is dependent on the media properties. It is not, in general, the same

as in a vacuum. The propagation velocity in any media (including vacuum) is given by:

oi/ l / /=fl=60/ _ + +1 =1/ _ 1+ _ +1 . (C68)

C.3.2 WAVELENGTH IN A MEDIA

The wavelength inside a material is not the same as in vacuum. The wavelength inside any media (includ-

ing vacuum) is given by:

2/'_m =2rC/fl=2 0.7 1+ +1 . (C69)

C.3.3 SKIN DEPTH

The skin depth is defined as the distance (z) inside the media at which the magnitude of the wave is

attenuated to the factor l/e, which means:

/_(z,t) = Eoe-le#Ze j_ = Eoe-aZe#Ze j"*

or

-1 e-O_e --

.'. az = 1, and

1
Z "-" --,

(C70)

The skin depth is therefore defined by:

1

O_
(C71)
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This is the general or exact computation for the skin depth in aay material (including vacuum). Two quick

checks of the validity of equation (C71) are now made. A look at the equation (C71) for vacuum, which

has a conductivity of zero, gives:

1 1

 vac-i /I 1 ,,
1 1

0oJ 0

A skin depth of infinity is what is intuitively expected for vacuum.

The skin depth equation which is normally presented in text books applies only to highly conductive

materials and is an approximation determined from equation (C71). When the conductivity is large (> 100

mho per meter) then equation (C71) gives:

1 1 1

This is the skin depth equation typically presented in textbooks.

C.4 SUMMARY

Equations (C24), (C30), and (C33) define the computations for the components of the complex wave

impedance of a material. Equations (C57), (C65), and (C67) define the computations for the components

of the complex wave propagation constant of a material. Equations (C68), (C69), and (C71) give the

velocity, wavelength, and skin depth calculations for a material. These equations are exact and are valid

for any material including vacuum.
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APPENDIX D

Method for Determining the Effective Impedance of the
Acoustic Blankets on a Surface

by

Jerry Reddell
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D.1 INTRODUCTION

The evaluation of the RF field strength inside the Delta La_mch Vehicle Fairing is complicated by the

presence of acoustic blankets which line the inner surface o!_ the fairing. These blankets are made of a

layer of fiberglass batting covered on each side with a thin sheet of fiberglass cloth which has been coated

with carbon loaded teflon. A method of evaluating the blankets affect on the RF fields is needed. Figure
1 illustrates the blanket construction and installation.

air batting ] faidng wall

lira
cover1 cover2

Figure D-1. Layers of material for the acoustic blanket installation on the fairing wall.

Equation (B55) of Appendix B indicates the blanketed area and its impedance are required to evaluate the

affect on the RF field strength. The area is determined rather easily. However, the effective impedance of

the blanket is not easily determined. The effective impedance is a function of three layers of material, each

material's thickness, each layer's RF characteristics, and the RF characteristics of the wall. Previous

attempts to assess the blanket's impact involved series sunmting of successive reflections and transmit-

tances. The approach was computationally intense and results were not convincing. An accurate model

for computing the effective impedance of the blanket covered area is needed. This note derives the math-

ematical equation used to accurately determine the effective impedance of the area covered by the blankets.

The effective impedance can then be used to calculate the RF fields inside the fairing.

The acoustic blanket also covers the RF window in the fail ing wall. A method of calculating the RF

transmittance (insertion loss) of the acoustic blanket is also needed. This note also develops the equations

which define the effective transmittance through the blanket _:overed window.

D.2 APPROACH

The analytical approach for solving the problem is:

a) Determine the equivalent impedance of the areas ccvered by layers of material (blankets). This

requires knowing the RF characteristics and dimensions of the materials. The equivalent imped-

ance can be determined by Equation D17 which is derived in section D.3 of this Appendix. The

determination must start at the wall and proceed one layer at a time to the innermost layer to the

center of the enclosure of fairing.

b) Having determined the impedances of the various areas, use equation B55 of Appendix B to

calculate the RF field inside the fairing or enclosure.
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c) Use equations D21, D22 and D23 and the impedances at each boundary (as determined in step a)

to compute the RF field which is transmitted through each layer of material in the blanket, start-

ing at the innermost material surface and proceeding toward the wall or open R_F window. These

equations are derived in section D.4 of this Appendix.

Section D.5 of this Appendix applies the equations to the blanket covered fairing wall to illustrate the

methodology for arriving at the equivalent surface impedance and transmittance through the blanket.

D.3 EQUIVALENT IMPEDANCE OF A MATERIAL BOUNDED BY TWO MEDIA

Consider a boundary between two media as shown in Figure D-2.

I

, media 1
I

Ei,H i ,
I

I

I

I

I

E,,H r ,I

i ------4
I

media 2

.----..-_ Et,H ,

Figure D-2. RF waves at the boundary of two media.

An incident wave is traveling in media 1 toward the boundary. The reflected wave is traveling in media 1

away from the boundary. The incident and reflected waves, as a function of the distance (1) from the

boundary, are described mathematically by equations (B23), (B24), and (B28) of Appendix B. The inci-

dent wave is defined by:

E i = EleJO)te-(etl +J]_l)(-l) and

H i = H1eJ_e-(al +j/31)(-l).
(D1)

The reflected wave is:

E r = EReJmte-(Otl +Jill)(l) and

H r = HReJ_e-(e q +j,61)(l).
(D2)

Where the propagation constant (y) has been replaced by its complex parts, the attenuation constant (or) and

the phase shift constant ([31).

The total field at distance (ll) from the boundary is given by the sum of the incident and reflected fields, or:

E tot = E i + E r,

E tot = EleJ(Ote(al +Jill )l + EReJa,,te-(a 1+J]_l )l,

(D3)
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H t°t = H i + H r, and

HtOt = HleJWte(al +Jill) / + HReJrOte-(al +Jill)l.

(D4)

The magnitudes of the reflected and incident waves are related by the complex impedances of the two

media as defined in equations (C11) and (C18) of Appendix C such that:

and

_,.02 +/71

Using equation (D5) in equation (D3) gives:

EtOt = EleJWt {e(_Z,+Jf,)l + [ rl2 - rll ]e-(al +Jl_ )l 1

Using equation (D6) in equation (D4) gives:

+ _ +rhJ

Using Euler's formula to define:

e jolt = cos(fill ) + j sin(fill ) and

e-Jl3_ l = cos(fill ) - j sin(fill).

Which are now used in equations (DT) and (D8) resulting in:

and

Collecting the real and imaginary portions of (D9) and (D10) gives:

ET°t=EleJt°l{(et_ll + IT/2 -- T/a1_22-_ l e-all ICOSflll+j_infill(eall -- [_2-_l]e-all)lan d_2_-_1J)J

(D5)

(D6)

(D7)

(D8)

(D9)

(D10)

(Dll)
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{(  l/c°s l'+jsin '/e°lHrOt = HleJ_ ea_t _ //2 ;//1 + 711
(D12)

72 + rh

Multiplying equations (Dll) and (D12) by /7z + 01 gives:

and

+rll]e a_' +[T2-71]e-a_t)cosflll+jsinfl, l([72 +7,]ea_l-[7z-71]e-aat)} (D13)

.Tot HleJ_ {([72 +//1]ea't-[72-71]e-all)cosflll+jsinflll([72 +71] ealt +[72-71]e-att)} •

72 + 71

(D14)

The impedance is defined as the ratio of the total E-field to the total H-field (the ratio of equation (D 13) to

equation (D14)):

E' f [(72 + //, )ealt + (//2 - //, )e-a'l lcos fl, l + J[(//2 + //_ )ea't -- (//2 -- rl, )e-a'l l sin flll l

7L(l)=H-T[_+//1)ea_t-(72-//1)e-a_t]c°sflll+j[(//2 +//,) eatt +(//20,)e-att]sinfl, lJ"
(D15)

Since
E 1

H-"T = 71 then equation (D15) becomes:

+771)ea'l+(//2-��1)e-all]cOsfill+J[(//2+171)ealt--(//2-��1)e-all]sinfllll.//L(/)=//l(_+//1)ea'/=(-_2//1)e-a'l]c°sflll+j[(//2+//I)eal'+(//2-//1)e-alt]sinflllJ (D16)

A simplified version of this equation often appears in text books when the media l is considered lossless

(0t_=0). (See reference 4, page 288, section 7-09, equation 10, for an example).

- [ 72 cos fil I + JT1 sin fil l l

Equation (D16) shows that the impedance at a distance from the boundary is not the constant value of

media 1 impedance. It is altered by the presence of the media 2 intrinsic impedance and varies with the

distance from the boundary. An interesting result of equation (D16) occurs when the distance, 1, from

media 1 is a multiple of a half wavelength, where the impedance is equal to the impedance of media 2.
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Now consider the addition of a third media and a second bot ndary as shown in Figure D-3.

Media 3

Ei,H i

Er, H r .

Media 1

i--- T

Figure 0-3. RF waves at surface boundary with two layers of material.

The impedance at the boundary of media 3 and 1 is given by equation (D16) with "l" replaced by the

thickness (T) of media I giving:

-¢tlT -CtlT .

J[(172 + 17_1eal" + (172- 1711e ]cos,B,T + J[(_2 + r/_) ealr -(172 - 17,)e ]sm,6_T

17L(T)= 17:[ [(172 + 17_)e'T- (172 /71)e-.,a- ]COS,g_T + j[(rt2 + 17_)e_'T + (172- 17_)e-_,a-]sm,81T"
•0317)

Media 1 is of thickness (T.) Media 2 impedance, r/2 can be thought of as a 'load' impedance which alters

the intrinsic media 1 impedance at its boundary with media 3. Media 1 and media 2 can be replaced, as

illustrated in Figure D-4, with an equivalent media impedance given by equation (D17) using the thickness

(T) of media 1 for the value of "t ."

Media 3

Ei,H i

Er, H r ..

Media 1/2

equivalent

Et,H t

Figure D-4. RF waves at the boundary of an equivalent surface material.

Successive application of equation (D17) can reduce several layers of different media with varying thick-

nesses to a single boundary problem.

D.4 TRANSMITTANCE THROUGH A MEDI_ OF THICKNESS, T

Considering Figure D-3, the transmittance into media 2 at its boundary is given by:

E r = El(0)+ ER(0) = E r°t and
/=0

(DI8)

H r = HI(O) + HR(O) = nT°tl /=0"

The total field at the boundary of media 1 and 2 is determiaed from equations (D13) and (D14) by setting

I =0. The field at boundary of media 3 and 1 is given by the equations when l = T. The ratio of the media
D-6



1 and 2 boundary total field to the field at the boundary of 2 and 3 (distance T) is given by:

ET°t(o) 202

ET"°t(T) -([02 +01] ealr +[02-O1]e-aIr)cosfllT+jsin[JlT([02 +01]ealT--[Oz--O1]e-a_r) "(D19)

and

HT°t(O) _ 201

HT°t(T) ([02 +01]ea'r--[Oz--Olle-a'T)cosfliT+jsinf11T([r12 +0,]e alT + [02 -- 0,]e-a'T)"
(D20)

Solve for the total field, ET°'(0) and H r°'(0), at media 2 boundary and substitute into equations

(D18) gives

E T = 202ET°t(T)

([02 +01] ea'T +[02--01]e-a'r)cos[31T+jsin[JlT([02 +0,]ea'T-[O2-0,]e-a'T )

(D21)

and

H T = 2rllHT°t(T)

([02+ rll]ea'T-[rl2 -01 ]e-°qT)cos 131T+ jsin/31T([r/2 + r/1 ]ea'T + [r/2- r/1 ]e-°qT)"

(D22)

Define four terms:

AR:real([O 2 + 01]e_'r- [02- 01]e-_tr),

A,:imag([02 +01]e_lr-[02- 0lie-air),

B R = real([02 + rl_ ]e_lr + [02 -/11 ]e-_'r ), and

B,=imag([02 +771] e_'r +[02-Ol]e-"_r) •

Substituting these four terms into equation D21 and D22 give:

E T -..
202ET°'(T)

( B . + jB, ) cos fl, T + j sin [31T( A . + jA, )

and (D22a)

n T

201Hr°'(T )

(AR + jA,)cos[31T + jsin[3,T(B R + jB,)"
(D22b)
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Collectingtherealandimaginarytermsin thedenominator.

E T = 2r72ET°'(T)

(B R cos tilT - A, sin fl, T) + j(A R sin fl, T + B, cos fl, T)

and (D22c)

H_. 2rllHT°' (T)= (D22d)

(a, cos tilT - B, sin tilT) + j(B, sin fl, T + A, cos tilT)"

Clearing the denominators of imaginary terms:

E r __ 2rl2Er°'(T)[(BR cosfl_T- A_ sinfl, T)- j(A R sin fl, T + B_ cosfl_T)] and (D22e)

(B_ cos fl_ T - A, sin fll T) 2 + (AR sin fl_ T + B, cos fl_ T) 2

H r = 201H TM (T)[(A. cos fl, T - B, sin tilT)- j(B R sin fliT + A, cos fl, T)] (D22f)

(A. cosfllT- B, sinfl, T) 2 +(B R sinfl, T + A, cosfl_T) 2

These two equations (D22e and D22f) define the electric and magnetic field terms for the RF wave trans-

mitted into media 2 in terms of the wave entering media 1 at _he boundary between media 1 and media 3.

The conjugate of the magnetic field portion of the wave is taken from equation (D22f):

[Hr]" = 2[rll ]*[Hr°' (T)]'[(A R cosfllT- B, sin fl, T) + j(BR sin fl_T + A, cosfl, T)] (D22g)

(A R cos fl, T - B, sin fl, T) 2 + (B, sita fl_T + A, cos tilT) 2

Since the instantaneous power of a wave composed of comple t phasors is determined by the product of the

electric field and the conjugate of the magnetic field portions of the wave. then the instantaneous power per

unit area entering media 2 is given by the product of equations (D22e) and (D22g) giving:

S T =

* rot Tot * I.402101] E (T)[H (T)] [(BRcosfllT- A_sinfllT)- j(a, sinfl, T + Bico'_fl]T)][(a,c°s_T- BisinfllT)+ J(BRsinfl, T + A_cosfl, T)]

{(BR cosfllT- A_ sin fliT) 2 + (a, sin/_T + B_cosfl_T)2}{(a, co;fllT - B_ sin _T) 2 + (BR sin ]_T + Ai cosfllT) 2}

Which simplifies to:

I 4r/2["1 ]*[(ARBR + AiBi)+ J{(ARBi- AiBR)(1- 2c°s2 fllT_' - (mR2 + ai2- BR2-- Bi2)(c°sfllTsinfllT)}] ] r
= .............. S 1

s r [{(.Re--_sfll__A_sin_T- _ + --_R si--i-i_l (+ _ e_s fl l T )-_A_cc _l--_- Bi sin fl l T ) z + (B. sin fl l T + A i cos fl t T ) 2 }I "

D-8
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wherethe term S1T = E r°t (T)[H Tot r)l*is the instantaneous complex power entering media 1 at its boundary

with media 3. Remember the average power would be one half the real part of equation (D23). The
L J

equation (D23) provides a means of determining the transmittance through a series of media layers and

boundaries. Equation (D23) can be successively applied to each media (starting at the first incident bound-

ary) to find the transmittance into the final media. This will be shown in Section D.5.2 for the acoustic
blanket.

D.5 APPLICATION TO THE ACOUSTIC BLANKET INSTALLATION

The application of equations (D17,) (D21,) (D22,) and (D23) to the acoustic blanket installation in the

Delta fairing will be described here. The process necessary to arrive at a solution for the effective imped-

ance and the transmittance will also be described. The blanket analyzed here is one of several possible

configurations. The blanket is similiar to a large pillow, having a conductive cover filled with none conduc-

tive batting. Figure D-1 illustrates the configuration analyze.

D.5.1 IMPEDANCE OF THE BLANKET-COVERED WALL

This section will describe the application of the equation (D17) to the acoustic blanket installation illus-

trated in Figure D-1. The inner fairing wall surface is the starting point and each layer of material is
considered in turn.

D.5.1.1 Impedance of the Fairing Wall

The wall material is aluminum. Its RF characteristics (impedance, attenuation constant, and phase con-

stant) can be computed from equations defined in Appendix C.

D.5.1.2 Impedance of Blanket Cover 2 and the Fairing Wall

Figure D-5 illustrates the cover and wall to be analyzed. Equation (D17) shows the RF characteristics of

the cover and the wall are required for the computation. Section D.5.1.1 described the computation of the

wall characteristics. Determination of the blanket cover intrinsic RF characteristics is complicated by its

construction. It is made of several thin layers of materials. Some of the layers have carbon particles which

make those layers conductive while other layers are non-conductive. Test data is available, however,

which can be used to compute its RF characteristics. Appendix E provides the equations for the imped-

ance, attenuation constant, and phase constant using the test data values for the complex dielectric constant.

Figure D-5.

i i

E,H

E r r,H -.

blanket

cover

RF wave at boundary for cover 2 and fairing wall.
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Using the cover RF characteristics and aluminum wall RF characteristics (from Section D.5.1.1), the im-

pedance at the surface of the blanket cover is given by equation (D17):

OLI(Tc) =

-Ct c Tc • O_c Tc
[[(rlalum+rIc)eCtcTc+(rlalum-rlc)e lcosflcTc+j{(rlah, m+rIC)e-(rlalum2-ric)e-aJC]sinflcTc l.

rlc ] [(_alum + rlc )eCt"Tc -- (rlalurn rllc )e-acTc l cos flcTc_ j[ (rla--u-_ + rlc )eC%-----Tc+ (rlalu----_ --_ _ J

(D24)

D.5.1.3 Impedance at Surface of the Batting

Figure D-6 illustrates the next step in the process. The next surface for consideration is the inner surface of

the batting. The batting is fiberglass. Its relative dielectric constant is estimated to be 1.02 and it is

considered lossless. The value of the dielectric constant was determined using:

dielectriCbaning = DensitYbatting (dielectriC glass ).
Density glass

The batting's RF impedance, attenuation, and phase constant are calculated using the equations in Appen-

dix C.

Batting

Figure D-6. Blanket batting and boundary with equivalent cover/wall material.

The impedance at the surface of the batting is calculated, using equation (D17), with the combined walL/

cover impedance, J7L1, (from Section D.5.1.2 equation (D24)) and the batting RF characteristics giving:

OL2(Tb) =

J[(r/L1 + r/Lz)e ° +(rlLl-rlLz)e-O]cosflbTb+j[(rlL, +rlL2)e°-(rlL,-llLz)e-°]sinflbTbl.(D25 )

rlL'[[(rlL,+rlL2)e°-(rlz, , rh.2)e-°]cos,O ,Tb+j[(rlL,+rlL2)e°+(rlL, OL2)e-°]sinflbTbJ

D.5.1.4 Impedance at Inner Surface of Blanket Cover

The final step is the impedance at the exposed surface of the blanket. This is illustrated in Figure D-7. The

impedance of the cover was determined is Section D.5.2. 77he impedance of the batting-cover-wall is from

equation (D24.)
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cover

t------Tc

_atting
_ covel

i4 wall

Figure D-7. RF waves at boundary with equivalent material for batting, cover sheet and wall.

Therefore the impedance at the exposed surface of the blanket cover is determined, using equation (D 17),

by the combined batting/cover/wall impedance (from Section D.5.1.4) and the cover characteristics (from

Section D.5.1.2,) giving:

r[(r/L2+rlc)ea_r_+(r/L2-rlc)e-a_r_]cosfl_Tc+j[(rlL2+rlc)ea_r_-(rlL2-rlc)e-a_r_]sinfl_Tcl
"L3(Tc)=r_CI[_L2; _ _-(r]L--_3--l_lC)e-acTC]cO__c---_c; j[(rJL----_2; .C)----__Tc+(r]L2--__--_cJ"

(D26)

This impedance can now be used to compute the reflection, transmittance, and loss of the blanket-covered
wall.

D.5.2 TRANSMITTANCE THROUGH THE ACOUSTIC BLANKET

Transmittance through the acoustic blanket is of concern because the blanket covers the RF window in the

fairing wall. Adequate signal is needed outside the fairing. Figure D-1 illustrates the problem if the wall is

replaced by air. The calculation of the transmittance through the acoustic blanket starts at the inner cover

1 surface and proceeds one layer at a time through the blanket until reaching the RF window.

D.5.2.1 Power Entering the Blanket

The blanket-wall system impedance (r/L3(T C)) resulting from section D.5.1.5 equation (D26) is used in

Appendix B equations (B40) and (B41) to calculate the field entering the blanket's inner cover surface of

Figure D-7. Using rlA for the impedance of air and riL3(T_) as the equevalent impedance of the blanket and

wall system, equations (B40) and (B41) give:

ET (Tc)--_OA--I'2 T]'-L3+/_L3")E1 and

"T(Tc) =( 2 '_''rla+11L3 (D27)

The conjugate of the magnetic field is:

I2[t_A + T_L3I][E/]*"[,,:(,c)]":t_ +_. ), (D27a)
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The instantaneous complex power entering the blanket's inn_ r cover is the product of the electric field and

the conjugate of the magnetic field giving:

=( 20___ 1(2[rla+rlL3]_[ES].E , 4r/L3 E'2 (D27b)

s_ t,7.+o._.St.l,.+,_12:_ :1,.+,1_/"

D.5.2.2 Transmittance Through the Blanket's Inner Cover into the Blanket's Batting Layer

The results of section D.5.2.1 become the field terms for use in equations (D22e), (D22f), and(D23) to

determine the field entering the batting. The electric field entering the batting is:

20 1.2E TI ( Tcl ) [(B Rcx coS flc l Tcl - Aicl sin fl cl Tc l )- J(ARcl sin fl cl Tc l + Bic I c°S fl cl Tc l )]

ET(Tb) = (BRclCOSflclTcl_aic 1 sinflclTcl)2 +(ARcl sinflclTcX +Bicl coSflclTcl)2 (D28)

The magnetic field entering the batting is:

T

H T (T b )= 2rlclHcl(Tc)[(ARcl coSflclTcl-Bicl sinflclTcl)-j(BRcl _inflclTcl + Aic 1 cosflclTcl)]

(A Rcl COS fl c l Tcl - B ic l sin fl c l Tcl )2 + (B Rcl sin fl cl :rcl + Aid cos fl c l Tc I )2
(D29)

The instantaneous complex power entering the batting is:

,.. I 4'l-_['l_,]'[(A.<m.<,+Ae'Bic')+ J((A_iBtci-AiciB',l)(1-2c°slflclTd)-(AR; ' + A_cl'-B_c,2-B,cl'Xc°sflciTc, sinflc, Tc,))] IS r
S_(T_).... _----3...... _ ..... 7_,2 .... •

(D30)

Where the subscript 'c 1' designates the blankets inner cover properties, [flea]* is the conjugate of the cover

impedance, s_ is the instantaneous complex power entering the inner cover sheet, and:

B Rcl = l_till (_ L2 -t- .cl ]e OtclTcl+ b L2 --17 cl ]e-OtclTci ) ,

B ic 1 = ima g (_l L2 + rl c l ]e c%_T<_ + [O L 2 -- O c l ] e -°t cl Tci 3,

ARc 1 = real _tl L2 + Ocl ]eaClrci-- [TIL2 -- Tlcl ]e -adTcl ), and

Aid = imag_rl L2 +rlcX] ea,IT_' -[0#.2 -rlcl ]e-a_iT" ) •

D.5.2.3 Transmittance Through the Blanket's Inner Cover and Baiting into the Blanket's 2nd Cover Sheet

The results of section D.5.2.2 become the field terms for t se in equations (D22e,) (D22f,) and (D23) to

determine the field entering the second cover sheet. The ek ctric field entering the second cover sheet is:

20LIEIb(Tb)[(BRbcosflbTb- AibsinflbTb)-j(ARbsinflbTb+BibcosflbTb)]
Erc2(Tc2)= (BRbCOSflbTb_AibsinflbTb)2+(ARbsinflbTb_BibCOS_bTb)l (D31)
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The magnetic field entering the second cover sheet is:

27? L1 "T (T b )[(ARb cos fl bTb -B/b sin flbTb )-- j(BRb sin flbTb + Aib cos flbTb )]

HT (Tc2): (aRb COSflbTb_Bib sin flbTb )2 +(BRb sinflbTb + aib cos flbTb)2 (D32)

The instantaneous complex power entering the second cover sheet is:

S'_(T_2) = {(Bah COSflbTb_- Aib s,n flbTb) +(A._ s,n fl, Tb + B,b cosfl_Tb_2}{(_.b COSflbTb - B_ sin flbTb) 2 +(B._, sin flbT _ + A,b cosflbTb)2}I '"

(D33)

Where the subscript 'b' designates the blanket's batting properties, [0bTis the conjugate of the cover im-

pedance,s[ is the instantaneous complex power entering the inner cover sheet, and:

. L-%T "_
BRc 1 = ro_/_TIL1 +,b_ °tbTb +[TILl --qb._ ),

Bib = imag_OLi + ?lb ]e abTb + [, Ll -- Ob ]e-abTb ) ,

A,_, = tea/([0L2 +,_1]e "c'_' -- _L2 -0_,]e-%_' )' and

D.5.2.4 Transmittance Through the Blanket and into the Air (Wall)

The results of section D.5.2.3 become the field terms for use in equations (D22e), (D22f), and (D23) to

determine the field entering the air (wall.) The electric field entering the air (wall) is:

2rl wE rc2(Tc2 )[(B,c 2 cos flc2 Tc2 - Aic2 sinfl c2Tc2) - j(A R_ sin [3c2Tc2 + Bic2 cos flc2 Tc2 )]T

Ew = (BRc2COSflc2Tc2_Aic2sinflc2Tc2)2 +(ARc2 Sinflc2Tc 2 + Bic2COSflc2Tc2)2 (D34)

The magnetic field entering the air (wall) is:

T Tc2- Bic 2 sin flc2Tc2 )-j(BRc 2 sin fl c2 Tc2 + Aic2 cos tic2 Tc2 )]T 2rlc2Hc2(Tc2)[(ARc2 c°s fl c2

H w =

(ARc 2 cos fl c2 Tc2 - Bic 2 sin fl c2 Tc2 ) 2 + (BRc 2 sin _ c2 Tc2 + Aic 2 cos fl c2 Tc2 ) 2
(D35)

The instantaneous complex power entering the air (wall) is:

s: = _f _---- - 7-752-- _--- _----_--,2 ,----TT--_. ---- 2_S_2
BR2COS fi T stuff T + A stuff T +B cosfl T_ A cosfl 77 B stuff T. + B slnfi2T + cosj_ Tc2

o

(D36)
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Where the subscript, 'c2', designates the blanket's second cover properties,[rlc2]" is the conjugate of the

cover impedance, S_ is the instantaneous complex power er tering the second cover sheet, and:

[0 " L%2r_2+[0 ., 77 L-a_2r"2'_BRc 2 = real w +'lc2.ff - c2.P /'

l_a"2T_2+[0w /7 1za_2T2),Bic 2 = imag _r 1 w + ,i c2 J_ - c2 ._

ARc 2 = real _Ow +11 c2 J_°_c2T2 -- [TIw - 17c2 ._]_-txc2Tc2 ), and

_O _t.,n "L_tc2T2 _ [_w _ . "_-ac2Tc2 "_Aic 2 = imag w _'1c2 1 _ c2 1_ )"

D.6 CONCLUSION

Equation (D17) can be used to develop the RF impedance model for the blanket covered walls of the

fairing. Equations (D21) and (D22) can be used to define the field leaving the RF window. The application

of the equations can be implemented easily using numerical values of the various material impedances in

a computer program or spreadsheet. Hopefully this note provides the insight necessary to apply the equa-

tions to any combination of layered materials that might be encountered.
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APPENDIX E

Calculating RF Characteristics of the

Acoustic Blanket Cover Sheets

by

Jerry Reddel|
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The acoustic blankets used in the Delta metal fairing are bui3t of two cover sheets and fiberglass batting

material. The cover sheets in turn are built from a thin sheet of fiberglass cloth which has been dipped in
Teflon and carbon loaded Teflon. Test measurements of the RF characteristics of the cover sheets were

performed. The test data on the cover sheets defines the los_ tangent and therefore the complex relative

dielectric constant of the sheet. Equations are needed to cc,mpute the other sheet parameters from the

complex dielectric constant; this Appendix develops the necessary equations. The equations are applicable

to any material for which the complex dielectric constant is known.

The intrinsic impedance (a complex number) is given by Appendix C equation (C15) as:

7/2 = JaN (El)
O" + jo._

where: r1 is the intrinsic impedance,

c0 is the frequency in radians per second,

c is the conductivity in mhos per meter,

_t is the permeability in henrys per meter, and

e is the permittivity in farads per meter.

Using the denominator and rearranging factors gives:

a+jo_ = jo._ (1 + j-_) (E2)

or

o'+jtoe = jO_ 1-j . (E3)

The permittivity of the material is a complex number defin,_d by:

e =eo(e'+je")

and the loss tangent is defined as

tan6 = --.
e'

Equation (E3) now becomes:

• t" e"'X

tr + jtOem = ja_oe' _ l - j--_- ).

Then comparison of equations (E3) and (E4) shows equivalent terms:

E-2
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Solvingequation(E5) for conductivitygives:

O" = (OEoE".

Inserting equation (5) into equation (1) gives:

772 = j co/./
E"'_"

jO_oE' (1- j _-)

(E6)

(E7)

Multiplying equation (7) by (1 + j--/e'--'_gives:
e'J

E"_ + E"%II+' J (1,_
_o_(_-,_, ,_j _-+_ __

Which reduces to:

772_ /Eo-_/ II+/_)2L0 /_Tg)

1_2 =ii_) 2 LO.

Where: 0 : tan -1

Therefore the real part of the impedance is given by:

(E8)

(E9)

(0) _Co_+lr/, = ['/Ic°s =
21+

(El0)

and the imaginary part is given by:

/.I _,, 2

rli=lrllsin(O)=_C°_ -1- !_(II+(_-)-1)
(Ell)
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To derive the attenuation and phase constant, we use the propagation constant relationship defined by

equation (C 16) of Appendix C:

(El2)

Where: 7 is the propagation constant of the material,
o_ is the attenuation constant of the material, and
13is the phase shift constant of the material.

But using equation (E4) in equation (El2) gives:

Where:

),=ljo#t(jO._oe,(1 _j___j_=e"'_]¢.ol_/.teOe, (1 - j__.)e"'_and

and therefore:

cos 0 = sin tan -I

sinO=cos tan -I

(A/ i ¢°sA + 1cos = , and

(El3)

(El4)

s_n(2/=i _°sA-1

Then:

icosCt-cos0 = sinl!tan-l(_']/: e
t2 t,e' .U

(El5)
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(El6)

The attenuation constant is the real part of the wave impedance, thus:

giving

_=lrlco=0=_o _o_/(=')=+@")= =i_ tan<e"/]
e'JJ

!r/ (c"V

I I +¢e"]' !,tZ+/-,/_____k£)_-Z i,.=o=,r! (El7)

The phase constant is the imaginary part of the wave impedance, thus:

i£t= IyI sin 0 = w_/X_O_/(e')2 + (e")2 [cos(½ tan-1 _"/1c' )J

resulting in

,:oFo,7.+(ff (El8)

Equations (E6), (El 0), (El 1), (El 7), and (El 8) provide the necessary RF characteristics for the cover sheet
from the measured complex dielectric constant.
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